This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catccatid.c | |- C = ( CatCat ` U ) |
|
| catccatid.b | |- B = ( Base ` C ) |
||
| catcid.o | |- .1. = ( Id ` C ) |
||
| catcid.i | |- I = ( idFunc ` X ) |
||
| catcid.u | |- ( ph -> U e. V ) |
||
| catcid.x | |- ( ph -> X e. B ) |
||
| Assertion | catcid | |- ( ph -> ( .1. ` X ) = I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catccatid.c | |- C = ( CatCat ` U ) |
|
| 2 | catccatid.b | |- B = ( Base ` C ) |
|
| 3 | catcid.o | |- .1. = ( Id ` C ) |
|
| 4 | catcid.i | |- I = ( idFunc ` X ) |
|
| 5 | catcid.u | |- ( ph -> U e. V ) |
|
| 6 | catcid.x | |- ( ph -> X e. B ) |
|
| 7 | 1 2 | catccatid | |- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( idFunc ` x ) ) ) ) |
| 8 | 5 7 | syl | |- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( idFunc ` x ) ) ) ) |
| 9 | 8 | simprd | |- ( ph -> ( Id ` C ) = ( x e. B |-> ( idFunc ` x ) ) ) |
| 10 | 3 9 | eqtrid | |- ( ph -> .1. = ( x e. B |-> ( idFunc ` x ) ) ) |
| 11 | simpr | |- ( ( ph /\ x = X ) -> x = X ) |
|
| 12 | 11 | fveq2d | |- ( ( ph /\ x = X ) -> ( idFunc ` x ) = ( idFunc ` X ) ) |
| 13 | fvexd | |- ( ph -> ( idFunc ` X ) e. _V ) |
|
| 14 | 10 12 6 13 | fvmptd | |- ( ph -> ( .1. ` X ) = ( idFunc ` X ) ) |
| 15 | 14 4 | eqtr4di | |- ( ph -> ( .1. ` X ) = I ) |