This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | |- B = ( Base ` C ) |
|
| issect.h | |- H = ( Hom ` C ) |
||
| issect.o | |- .x. = ( comp ` C ) |
||
| issect.i | |- .1. = ( Id ` C ) |
||
| issect.s | |- S = ( Sect ` C ) |
||
| issect.c | |- ( ph -> C e. Cat ) |
||
| issect.x | |- ( ph -> X e. B ) |
||
| issect.y | |- ( ph -> Y e. B ) |
||
| issect.f | |- ( ph -> F e. ( X H Y ) ) |
||
| issect.g | |- ( ph -> G e. ( Y H X ) ) |
||
| Assertion | issect2 | |- ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | |- B = ( Base ` C ) |
|
| 2 | issect.h | |- H = ( Hom ` C ) |
|
| 3 | issect.o | |- .x. = ( comp ` C ) |
|
| 4 | issect.i | |- .1. = ( Id ` C ) |
|
| 5 | issect.s | |- S = ( Sect ` C ) |
|
| 6 | issect.c | |- ( ph -> C e. Cat ) |
|
| 7 | issect.x | |- ( ph -> X e. B ) |
|
| 8 | issect.y | |- ( ph -> Y e. B ) |
|
| 9 | issect.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 10 | issect.g | |- ( ph -> G e. ( Y H X ) ) |
|
| 11 | 9 10 | jca | |- ( ph -> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) |
| 12 | 1 2 3 4 5 6 7 8 | issect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) ) |
| 13 | df-3an | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |
|
| 14 | 12 13 | bitrdi | |- ( ph -> ( F ( X S Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) ) |
| 15 | 11 14 | mpbirand | |- ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |