This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfth.b | |- B = ( Base ` C ) |
|
| isfth.h | |- H = ( Hom ` C ) |
||
| isfth.j | |- J = ( Hom ` D ) |
||
| ffthf1o.f | |- ( ph -> F ( ( C Full D ) i^i ( C Faith D ) ) G ) |
||
| ffthf1o.x | |- ( ph -> X e. B ) |
||
| ffthf1o.y | |- ( ph -> Y e. B ) |
||
| Assertion | ffthf1o | |- ( ph -> ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F ` X ) J ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | |- B = ( Base ` C ) |
|
| 2 | isfth.h | |- H = ( Hom ` C ) |
|
| 3 | isfth.j | |- J = ( Hom ` D ) |
|
| 4 | ffthf1o.f | |- ( ph -> F ( ( C Full D ) i^i ( C Faith D ) ) G ) |
|
| 5 | ffthf1o.x | |- ( ph -> X e. B ) |
|
| 6 | ffthf1o.y | |- ( ph -> Y e. B ) |
|
| 7 | brin | |- ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
|
| 8 | 4 7 | sylib | |- ( ph -> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
| 9 | 8 | simprd | |- ( ph -> F ( C Faith D ) G ) |
| 10 | 1 2 3 9 5 6 | fthf1 | |- ( ph -> ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) ) |
| 11 | 8 | simpld | |- ( ph -> F ( C Full D ) G ) |
| 12 | 1 3 2 11 5 6 | fullfo | |- ( ph -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) |
| 13 | df-f1o | |- ( ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F ` X ) J ( F ` Y ) ) <-> ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) ) |
|
| 14 | 10 12 13 | sylanbrc | |- ( ph -> ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F ` X ) J ( F ` Y ) ) ) |