This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( c = C -> ( c Full d ) = ( C Full d ) ) |
|
| 2 | oveq1 | |- ( c = C -> ( c Func d ) = ( C Func d ) ) |
|
| 3 | 1 2 | sseq12d | |- ( c = C -> ( ( c Full d ) C_ ( c Func d ) <-> ( C Full d ) C_ ( C Func d ) ) ) |
| 4 | oveq2 | |- ( d = D -> ( C Full d ) = ( C Full D ) ) |
|
| 5 | oveq2 | |- ( d = D -> ( C Func d ) = ( C Func D ) ) |
|
| 6 | 4 5 | sseq12d | |- ( d = D -> ( ( C Full d ) C_ ( C Func d ) <-> ( C Full D ) C_ ( C Func D ) ) ) |
| 7 | ovex | |- ( c Func d ) e. _V |
|
| 8 | simpl | |- ( ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) -> f ( c Func d ) g ) |
|
| 9 | 8 | ssopab2i | |- { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } C_ { <. f , g >. | f ( c Func d ) g } |
| 10 | opabss | |- { <. f , g >. | f ( c Func d ) g } C_ ( c Func d ) |
|
| 11 | 9 10 | sstri | |- { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } C_ ( c Func d ) |
| 12 | 7 11 | ssexi | |- { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } e. _V |
| 13 | df-full | |- Full = ( c e. Cat , d e. Cat |-> { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } ) |
|
| 14 | 13 | ovmpt4g | |- ( ( c e. Cat /\ d e. Cat /\ { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } e. _V ) -> ( c Full d ) = { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } ) |
| 15 | 12 14 | mp3an3 | |- ( ( c e. Cat /\ d e. Cat ) -> ( c Full d ) = { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } ) |
| 16 | 15 11 | eqsstrdi | |- ( ( c e. Cat /\ d e. Cat ) -> ( c Full d ) C_ ( c Func d ) ) |
| 17 | 3 6 16 | vtocl2ga | |- ( ( C e. Cat /\ D e. Cat ) -> ( C Full D ) C_ ( C Func D ) ) |
| 18 | 13 | mpondm0 | |- ( -. ( C e. Cat /\ D e. Cat ) -> ( C Full D ) = (/) ) |
| 19 | 0ss | |- (/) C_ ( C Func D ) |
|
| 20 | 18 19 | eqsstrdi | |- ( -. ( C e. Cat /\ D e. Cat ) -> ( C Full D ) C_ ( C Func D ) ) |
| 21 | 17 20 | pm2.61i | |- ( C Full D ) C_ ( C Func D ) |