This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbas.c | |- C = ( CatCat ` U ) |
|
| catcbas.b | |- B = ( Base ` C ) |
||
| catcbas.u | |- ( ph -> U e. V ) |
||
| Assertion | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | |- C = ( CatCat ` U ) |
|
| 2 | catcbas.b | |- B = ( Base ` C ) |
|
| 3 | catcbas.u | |- ( ph -> U e. V ) |
|
| 4 | eqidd | |- ( ph -> ( U i^i Cat ) = ( U i^i Cat ) ) |
|
| 5 | eqidd | |- ( ph -> ( x e. ( U i^i Cat ) , y e. ( U i^i Cat ) |-> ( x Func y ) ) = ( x e. ( U i^i Cat ) , y e. ( U i^i Cat ) |-> ( x Func y ) ) ) |
|
| 6 | eqidd | |- ( ph -> ( v e. ( ( U i^i Cat ) X. ( U i^i Cat ) ) , z e. ( U i^i Cat ) |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) = ( v e. ( ( U i^i Cat ) X. ( U i^i Cat ) ) , z e. ( U i^i Cat ) |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
|
| 7 | 1 3 4 5 6 | catcval | |- ( ph -> C = { <. ( Base ` ndx ) , ( U i^i Cat ) >. , <. ( Hom ` ndx ) , ( x e. ( U i^i Cat ) , y e. ( U i^i Cat ) |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( ( U i^i Cat ) X. ( U i^i Cat ) ) , z e. ( U i^i Cat ) |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |
| 8 | catstr | |- { <. ( Base ` ndx ) , ( U i^i Cat ) >. , <. ( Hom ` ndx ) , ( x e. ( U i^i Cat ) , y e. ( U i^i Cat ) |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( ( U i^i Cat ) X. ( U i^i Cat ) ) , z e. ( U i^i Cat ) |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
|
| 9 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 10 | snsstp1 | |- { <. ( Base ` ndx ) , ( U i^i Cat ) >. } C_ { <. ( Base ` ndx ) , ( U i^i Cat ) >. , <. ( Hom ` ndx ) , ( x e. ( U i^i Cat ) , y e. ( U i^i Cat ) |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( ( U i^i Cat ) X. ( U i^i Cat ) ) , z e. ( U i^i Cat ) |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } |
|
| 11 | inex1g | |- ( U e. V -> ( U i^i Cat ) e. _V ) |
|
| 12 | 3 11 | syl | |- ( ph -> ( U i^i Cat ) e. _V ) |
| 13 | 7 8 9 10 12 2 | strfv3 | |- ( ph -> B = ( U i^i Cat ) ) |