This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. Note that "catciso.u" is redundant thanks to elbasfv . (Contributed by Mario Carneiro, 29-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catciso.c | |- C = ( CatCat ` U ) |
|
| catciso.b | |- B = ( Base ` C ) |
||
| catciso.r | |- R = ( Base ` X ) |
||
| catciso.s | |- S = ( Base ` Y ) |
||
| catciso.u | |- ( ph -> U e. V ) |
||
| catciso.x | |- ( ph -> X e. B ) |
||
| catciso.y | |- ( ph -> Y e. B ) |
||
| catciso.i | |- I = ( Iso ` C ) |
||
| Assertion | catciso | |- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catciso.c | |- C = ( CatCat ` U ) |
|
| 2 | catciso.b | |- B = ( Base ` C ) |
|
| 3 | catciso.r | |- R = ( Base ` X ) |
|
| 4 | catciso.s | |- S = ( Base ` Y ) |
|
| 5 | catciso.u | |- ( ph -> U e. V ) |
|
| 6 | catciso.x | |- ( ph -> X e. B ) |
|
| 7 | catciso.y | |- ( ph -> Y e. B ) |
|
| 8 | catciso.i | |- I = ( Iso ` C ) |
|
| 9 | relfunc | |- Rel ( X Func Y ) |
|
| 10 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 11 | 1 | catccat | |- ( U e. V -> C e. Cat ) |
| 12 | 5 11 | syl | |- ( ph -> C e. Cat ) |
| 13 | 2 10 12 6 7 8 | isoval | |- ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) |
| 14 | 13 | eleq2d | |- ( ph -> ( F e. ( X I Y ) <-> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 15 | 14 | biimpa | |- ( ( ph /\ F e. ( X I Y ) ) -> F e. dom ( X ( Inv ` C ) Y ) ) |
| 16 | 12 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> C e. Cat ) |
| 17 | 6 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> X e. B ) |
| 18 | 7 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> Y e. B ) |
| 19 | 2 10 16 17 18 | invfun | |- ( ( ph /\ F e. ( X I Y ) ) -> Fun ( X ( Inv ` C ) Y ) ) |
| 20 | funfvbrb | |- ( Fun ( X ( Inv ` C ) Y ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
| 22 | 15 21 | mpbid | |- ( ( ph /\ F e. ( X I Y ) ) -> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) |
| 23 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 24 | 2 10 16 17 18 23 | isinv | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) /\ ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) ) |
| 25 | 22 24 | mpbid | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) /\ ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) |
| 26 | 25 | simpld | |- ( ( ph /\ F e. ( X I Y ) ) -> F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) |
| 27 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 28 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 29 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 30 | 2 27 28 29 23 16 17 18 | issect | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F e. ( X ( Hom ` C ) Y ) /\ ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 31 | 26 30 | mpbid | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F e. ( X ( Hom ` C ) Y ) /\ ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 32 | 31 | simp1d | |- ( ( ph /\ F e. ( X I Y ) ) -> F e. ( X ( Hom ` C ) Y ) ) |
| 33 | 1 2 5 27 6 7 | catchom | |- ( ph -> ( X ( Hom ` C ) Y ) = ( X Func Y ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> ( X ( Hom ` C ) Y ) = ( X Func Y ) ) |
| 35 | 32 34 | eleqtrd | |- ( ( ph /\ F e. ( X I Y ) ) -> F e. ( X Func Y ) ) |
| 36 | 1st2nd | |- ( ( Rel ( X Func Y ) /\ F e. ( X Func Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 37 | 9 35 36 | sylancr | |- ( ( ph /\ F e. ( X I Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 38 | 1st2ndbr | |- ( ( Rel ( X Func Y ) /\ F e. ( X Func Y ) ) -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
|
| 39 | 9 35 38 | sylancr | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
| 40 | eqid | |- ( Hom ` X ) = ( Hom ` X ) |
|
| 41 | eqid | |- ( Hom ` Y ) = ( Hom ` Y ) |
|
| 42 | 39 | adantr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
| 43 | simprl | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> x e. R ) |
|
| 44 | simprr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> y e. R ) |
|
| 45 | 3 40 41 42 43 44 | funcf2 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 46 | relfunc | |- Rel ( Y Func X ) |
|
| 47 | 31 | simp2d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) ) |
| 48 | 1 2 5 27 7 6 | catchom | |- ( ph -> ( Y ( Hom ` C ) X ) = ( Y Func X ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> ( Y ( Hom ` C ) X ) = ( Y Func X ) ) |
| 50 | 47 49 | eleqtrd | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y Func X ) ) |
| 51 | 1st2ndbr | |- ( ( Rel ( Y Func X ) /\ ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y Func X ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( Y Func X ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
|
| 52 | 46 50 51 | sylancr | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( Y Func X ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
| 53 | 52 | adantr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( Y Func X ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
| 54 | 3 4 42 | funcf1 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` F ) : R --> S ) |
| 55 | 54 43 | ffvelcdmd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` F ) ` x ) e. S ) |
| 56 | 54 44 | ffvelcdmd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` F ) ` y ) e. S ) |
| 57 | 4 41 40 53 55 56 | funcf2 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` X ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 58 | 31 | simp3d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
| 59 | 5 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> U e. V ) |
| 60 | 1 2 59 28 17 18 17 35 50 | catcco | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) |
| 61 | eqid | |- ( idFunc ` X ) = ( idFunc ` X ) |
|
| 62 | 1 2 29 61 5 6 | catcid | |- ( ph -> ( ( Id ` C ) ` X ) = ( idFunc ` X ) ) |
| 63 | 62 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( Id ` C ) ` X ) = ( idFunc ` X ) ) |
| 64 | 58 60 63 | 3eqtr3d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) = ( idFunc ` X ) ) |
| 65 | 64 | adantr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) = ( idFunc ` X ) ) |
| 66 | 65 | fveq2d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( 1st ` ( idFunc ` X ) ) ) |
| 67 | 66 | fveq1d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` x ) = ( ( 1st ` ( idFunc ` X ) ) ` x ) ) |
| 68 | 35 | adantr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> F e. ( X Func Y ) ) |
| 69 | 50 | adantr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y Func X ) ) |
| 70 | 3 68 69 43 | cofu1 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` x ) = ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ) |
| 71 | 1 2 5 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 72 | inss2 | |- ( U i^i Cat ) C_ Cat |
|
| 73 | 71 72 | eqsstrdi | |- ( ph -> B C_ Cat ) |
| 74 | 73 6 | sseldd | |- ( ph -> X e. Cat ) |
| 75 | 74 | ad2antrr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> X e. Cat ) |
| 76 | 61 3 75 43 | idfu1 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( idFunc ` X ) ) ` x ) = x ) |
| 77 | 67 70 76 | 3eqtr3d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) = x ) |
| 78 | 66 | fveq1d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` y ) = ( ( 1st ` ( idFunc ` X ) ) ` y ) ) |
| 79 | 3 68 69 44 | cofu1 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` y ) = ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) |
| 80 | 61 3 75 44 | idfu1 | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( idFunc ` X ) ) ` y ) = y ) |
| 81 | 78 79 80 | 3eqtr3d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) = y ) |
| 82 | 77 81 | oveq12d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` X ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) = ( x ( Hom ` X ) y ) ) |
| 83 | 82 | feq3d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` X ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) <-> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( x ( Hom ` X ) y ) ) ) |
| 84 | 57 83 | mpbid | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( x ( Hom ` X ) y ) ) |
| 85 | 65 | fveq2d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 2nd ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( 2nd ` ( idFunc ` X ) ) ) |
| 86 | 85 | oveqd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) y ) = ( x ( 2nd ` ( idFunc ` X ) ) y ) ) |
| 87 | 3 68 69 43 44 | cofu2nd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 88 | 61 3 75 40 43 44 | idfu2nd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` ( idFunc ` X ) ) y ) = ( _I |` ( x ( Hom ` X ) y ) ) ) |
| 89 | 86 87 88 | 3eqtr3d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) = ( _I |` ( x ( Hom ` X ) y ) ) ) |
| 90 | 25 | simprd | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F ) |
| 91 | 2 27 28 29 23 16 18 17 | issect | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F <-> ( ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 92 | 90 91 | mpbid | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( ( Id ` C ) ` Y ) ) ) |
| 93 | 92 | simp3d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( ( Id ` C ) ` Y ) ) |
| 94 | 1 2 59 28 18 17 18 50 35 | catcco | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
| 95 | eqid | |- ( idFunc ` Y ) = ( idFunc ` Y ) |
|
| 96 | 1 2 29 95 5 7 | catcid | |- ( ph -> ( ( Id ` C ) ` Y ) = ( idFunc ` Y ) ) |
| 97 | 96 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( Id ` C ) ` Y ) = ( idFunc ` Y ) ) |
| 98 | 93 94 97 | 3eqtr3d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) = ( idFunc ` Y ) ) |
| 99 | 98 | adantr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) = ( idFunc ` Y ) ) |
| 100 | 99 | fveq2d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( 2nd ` ( idFunc ` Y ) ) ) |
| 101 | 100 | oveqd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) ( ( 1st ` F ) ` y ) ) = ( ( ( 1st ` F ) ` x ) ( 2nd ` ( idFunc ` Y ) ) ( ( 1st ` F ) ` y ) ) ) |
| 102 | 4 69 68 55 56 | cofu2nd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) ( ( 1st ` F ) ` y ) ) = ( ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( 2nd ` F ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) ) |
| 103 | 77 81 | oveq12d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( 2nd ` F ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) = ( x ( 2nd ` F ) y ) ) |
| 104 | 103 | coeq1d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( 2nd ` F ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) = ( ( x ( 2nd ` F ) y ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) ) |
| 105 | 102 104 | eqtrd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) ( ( 1st ` F ) ` y ) ) = ( ( x ( 2nd ` F ) y ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) ) |
| 106 | 73 | ad2antrr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> B C_ Cat ) |
| 107 | 7 | ad2antrr | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> Y e. B ) |
| 108 | 106 107 | sseldd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> Y e. Cat ) |
| 109 | 95 4 108 41 55 56 | idfu2nd | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( idFunc ` Y ) ) ( ( 1st ` F ) ` y ) ) = ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 110 | 101 105 109 | 3eqtr3d | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( x ( 2nd ` F ) y ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) = ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 111 | 45 84 89 110 | fcof1od | |- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 112 | 111 | ralrimivva | |- ( ( ph /\ F e. ( X I Y ) ) -> A. x e. R A. y e. R ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
| 113 | 3 40 41 | isffth2 | |- ( ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) <-> ( ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) /\ A. x e. R A. y e. R ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
| 114 | 39 112 113 | sylanbrc | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
| 115 | df-br | |- ( ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) <-> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
|
| 116 | 114 115 | sylib | |- ( ( ph /\ F e. ( X I Y ) ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 117 | 37 116 | eqeltrd | |- ( ( ph /\ F e. ( X I Y ) ) -> F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 118 | 3 4 39 | funcf1 | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) : R --> S ) |
| 119 | 4 3 52 | funcf1 | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) : S --> R ) |
| 120 | 64 | fveq2d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( 1st ` ( idFunc ` X ) ) ) |
| 121 | 3 35 50 | cofu1st | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) o. ( 1st ` F ) ) ) |
| 122 | 74 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> X e. Cat ) |
| 123 | 61 3 122 | idfu1st | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( idFunc ` X ) ) = ( _I |` R ) ) |
| 124 | 120 121 123 | 3eqtr3d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) o. ( 1st ` F ) ) = ( _I |` R ) ) |
| 125 | 98 | fveq2d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( 1st ` ( idFunc ` Y ) ) ) |
| 126 | 4 50 35 | cofu1st | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( ( 1st ` F ) o. ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) ) |
| 127 | 73 7 | sseldd | |- ( ph -> Y e. Cat ) |
| 128 | 127 | adantr | |- ( ( ph /\ F e. ( X I Y ) ) -> Y e. Cat ) |
| 129 | 95 4 128 | idfu1st | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( idFunc ` Y ) ) = ( _I |` S ) ) |
| 130 | 125 126 129 | 3eqtr3d | |- ( ( ph /\ F e. ( X I Y ) ) -> ( ( 1st ` F ) o. ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( _I |` S ) ) |
| 131 | 118 119 124 130 | fcof1od | |- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) : R -1-1-onto-> S ) |
| 132 | 117 131 | jca | |- ( ( ph /\ F e. ( X I Y ) ) -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) |
| 133 | 12 | adantr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> C e. Cat ) |
| 134 | 6 | adantr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> X e. B ) |
| 135 | 7 | adantr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> Y e. B ) |
| 136 | inss1 | |- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Full Y ) |
|
| 137 | fullfunc | |- ( X Full Y ) C_ ( X Func Y ) |
|
| 138 | 136 137 | sstri | |- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Func Y ) |
| 139 | simprl | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
|
| 140 | 138 139 | sselid | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F e. ( X Func Y ) ) |
| 141 | 9 140 36 | sylancr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 142 | 5 | adantr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> U e. V ) |
| 143 | eqid | |- ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) = ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) |
|
| 144 | 141 139 | eqeltrrd | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 145 | 144 115 | sylibr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
| 146 | simprr | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> ( 1st ` F ) : R -1-1-onto-> S ) |
|
| 147 | 1 2 3 4 142 134 135 10 143 145 146 | catcisolem | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. ( X ( Inv ` C ) Y ) <. `' ( 1st ` F ) , ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) >. ) |
| 148 | 141 147 | eqbrtrd | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F ( X ( Inv ` C ) Y ) <. `' ( 1st ` F ) , ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) >. ) |
| 149 | 2 10 133 134 135 8 148 | inviso1 | |- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F e. ( X I Y ) ) |
| 150 | 132 149 | impbida | |- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) ) |