This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfuval.i | |- I = ( idFunc ` C ) |
|
| idfuval.b | |- B = ( Base ` C ) |
||
| idfuval.c | |- ( ph -> C e. Cat ) |
||
| idfuval.h | |- H = ( Hom ` C ) |
||
| Assertion | idfuval | |- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | |- I = ( idFunc ` C ) |
|
| 2 | idfuval.b | |- B = ( Base ` C ) |
|
| 3 | idfuval.c | |- ( ph -> C e. Cat ) |
|
| 4 | idfuval.h | |- H = ( Hom ` C ) |
|
| 5 | fvexd | |- ( c = C -> ( Base ` c ) e. _V ) |
|
| 6 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 8 | simpr | |- ( ( c = C /\ b = B ) -> b = B ) |
|
| 9 | 8 | reseq2d | |- ( ( c = C /\ b = B ) -> ( _I |` b ) = ( _I |` B ) ) |
| 10 | 8 | sqxpeqd | |- ( ( c = C /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
| 11 | simpl | |- ( ( c = C /\ b = B ) -> c = C ) |
|
| 12 | 11 | fveq2d | |- ( ( c = C /\ b = B ) -> ( Hom ` c ) = ( Hom ` C ) ) |
| 13 | 12 4 | eqtr4di | |- ( ( c = C /\ b = B ) -> ( Hom ` c ) = H ) |
| 14 | 13 | fveq1d | |- ( ( c = C /\ b = B ) -> ( ( Hom ` c ) ` z ) = ( H ` z ) ) |
| 15 | 14 | reseq2d | |- ( ( c = C /\ b = B ) -> ( _I |` ( ( Hom ` c ) ` z ) ) = ( _I |` ( H ` z ) ) ) |
| 16 | 10 15 | mpteq12dv | |- ( ( c = C /\ b = B ) -> ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) |
| 17 | 9 16 | opeq12d | |- ( ( c = C /\ b = B ) -> <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 18 | 5 7 17 | csbied2 | |- ( c = C -> [_ ( Base ` c ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 19 | df-idfu | |- idFunc = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` c ) ` z ) ) ) >. ) |
|
| 20 | opex | |- <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. e. _V |
|
| 21 | 18 19 20 | fvmpt | |- ( C e. Cat -> ( idFunc ` C ) = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 22 | 3 21 | syl | |- ( ph -> ( idFunc ` C ) = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 23 | 1 22 | eqtrid | |- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |