This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invfval.x | |- ( ph -> X e. B ) |
||
| invfval.y | |- ( ph -> Y e. B ) |
||
| invfval.s | |- S = ( Sect ` C ) |
||
| Assertion | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invfval.x | |- ( ph -> X e. B ) |
|
| 5 | invfval.y | |- ( ph -> Y e. B ) |
|
| 6 | invfval.s | |- S = ( Sect ` C ) |
|
| 7 | 1 2 3 4 5 6 | invfval | |- ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) ) |
| 8 | 7 | breqd | |- ( ph -> ( F ( X N Y ) G <-> F ( ( X S Y ) i^i `' ( Y S X ) ) G ) ) |
| 9 | brin | |- ( F ( ( X S Y ) i^i `' ( Y S X ) ) G <-> ( F ( X S Y ) G /\ F `' ( Y S X ) G ) ) |
|
| 10 | 8 9 | bitrdi | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ F `' ( Y S X ) G ) ) ) |
| 11 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 12 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 13 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 14 | 1 11 12 13 6 3 5 4 | sectss | |- ( ph -> ( Y S X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) ) |
| 15 | relxp | |- Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) |
|
| 16 | relss | |- ( ( Y S X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y S X ) ) ) |
|
| 17 | 14 15 16 | mpisyl | |- ( ph -> Rel ( Y S X ) ) |
| 18 | relbrcnvg | |- ( Rel ( Y S X ) -> ( F `' ( Y S X ) G <-> G ( Y S X ) F ) ) |
|
| 19 | 17 18 | syl | |- ( ph -> ( F `' ( Y S X ) G <-> G ( Y S X ) F ) ) |
| 20 | 19 | anbi2d | |- ( ph -> ( ( F ( X S Y ) G /\ F `' ( Y S X ) G ) <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |
| 21 | 10 20 | bitrd | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |