This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ococnv1 | |- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1orel | |- ( F : A -1-1-onto-> B -> Rel F ) |
|
| 2 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 3 | 1 2 | sylib | |- ( F : A -1-1-onto-> B -> `' `' F = F ) |
| 4 | 3 | coeq2d | |- ( F : A -1-1-onto-> B -> ( `' F o. `' `' F ) = ( `' F o. F ) ) |
| 5 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 6 | f1ococnv2 | |- ( `' F : B -1-1-onto-> A -> ( `' F o. `' `' F ) = ( _I |` A ) ) |
|
| 7 | 5 6 | syl | |- ( F : A -1-1-onto-> B -> ( `' F o. `' `' F ) = ( _I |` A ) ) |
| 8 | 4 7 | eqtr3d | |- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |