This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for catciso . (Contributed by Mario Carneiro, 29-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catciso.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | ||
| catciso.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | ||
| catciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| catciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| catcisolem.i | ⊢ 𝐼 = ( Inv ‘ 𝐶 ) | ||
| catcisolem.g | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ) | ||
| catcisolem.1 | ⊢ ( 𝜑 → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) | ||
| catcisolem.2 | ⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) | ||
| Assertion | catcisolem | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catciso.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | |
| 4 | catciso.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | |
| 5 | catciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | catciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | catciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | catcisolem.i | ⊢ 𝐼 = ( Inv ‘ 𝐶 ) | |
| 9 | catcisolem.g | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | catcisolem.1 | ⊢ ( 𝜑 → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) | |
| 11 | catcisolem.2 | ⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) | |
| 12 | f1ococnv1 | ⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑅 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑅 ) ) |
| 14 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 15 | f1of | ⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → 𝐹 : 𝑅 ⟶ 𝑆 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 : 𝑅 ⟶ 𝑆 ) |
| 17 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝑢 ∈ 𝑅 ) | |
| 18 | 16 17 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑆 ) |
| 19 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝑣 ∈ 𝑅 ) | |
| 20 | 16 19 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
| 21 | simpl | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → 𝑥 = ( 𝐹 ‘ 𝑢 ) ) | |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 23 | simpr | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → 𝑦 = ( 𝐹 ‘ 𝑣 ) ) | |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 25 | 22 24 | oveq12d | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 26 | 25 | cnveqd | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 27 | ovex | ⊢ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ∈ V | |
| 28 | 27 | cnvex | ⊢ ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ∈ V |
| 29 | 26 9 28 | ovmpoa | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 30 | 18 20 29 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 31 | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑢 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) | |
| 32 | 14 17 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 33 | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) = 𝑣 ) | |
| 34 | 14 19 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 𝐺 𝑣 ) ) |
| 36 | 35 | cnveqd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ◡ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) 𝐺 ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ◡ ( 𝑢 𝐺 𝑣 ) ) |
| 37 | 30 36 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) = ◡ ( 𝑢 𝐺 𝑣 ) ) |
| 38 | 37 | coeq1d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) |
| 39 | eqid | ⊢ ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 ) | |
| 40 | eqid | ⊢ ( Hom ‘ 𝑌 ) = ( Hom ‘ 𝑌 ) | |
| 41 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 42 | 3 39 40 41 17 19 | ffthf1o | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 43 | f1ococnv1 | ⊢ ( ( 𝑢 𝐺 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) –1-1-onto→ ( ( 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ 𝑣 ) ) → ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ◡ ( 𝑢 𝐺 𝑣 ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 45 | 38 44 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 46 | 45 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑋 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 48 | df-ov | ⊢ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) = ( ( Hom ‘ 𝑋 ) ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 49 | 47 48 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) |
| 50 | 49 | reseq2d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 51 | 50 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) = ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑋 ) 𝑣 ) ) ) |
| 52 | 46 51 | eqtr4di | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) ) |
| 53 | 13 52 | opeq12d | ⊢ ( 𝜑 → 〈 ( ◡ 𝐹 ∘ 𝐹 ) , ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) 〉 = 〈 ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) 〉 ) |
| 54 | inss1 | ⊢ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Full 𝑌 ) | |
| 55 | fullfunc | ⊢ ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 ) | |
| 56 | 54 55 | sstri | ⊢ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Func 𝑌 ) |
| 57 | 56 | ssbri | ⊢ ( 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 58 | 10 57 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 59 | eqid | ⊢ ( Id ‘ 𝑌 ) = ( Id ‘ 𝑌 ) | |
| 60 | eqid | ⊢ ( Id ‘ 𝑋 ) = ( Id ‘ 𝑋 ) | |
| 61 | eqid | ⊢ ( comp ‘ 𝑌 ) = ( comp ‘ 𝑌 ) | |
| 62 | eqid | ⊢ ( comp ‘ 𝑋 ) = ( comp ‘ 𝑋 ) | |
| 63 | 1 2 5 | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 64 | inss2 | ⊢ ( 𝑈 ∩ Cat ) ⊆ Cat | |
| 65 | 63 64 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ Cat ) |
| 66 | 65 7 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ Cat ) |
| 67 | 65 6 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
| 68 | f1ocnv | ⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑅 ) | |
| 69 | f1of | ⊢ ( ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑅 → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) | |
| 70 | 11 68 69 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
| 71 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ V | |
| 72 | 71 | cnvex | ⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ V |
| 73 | 9 72 | fnmpoi | ⊢ 𝐻 Fn ( 𝑆 × 𝑆 ) |
| 74 | 73 | a1i | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 75 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 76 | 70 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 77 | 76 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 78 | 70 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 79 | 78 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 80 | 3 39 40 75 77 79 | ffthf1o | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 81 | f1ocnv | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) | |
| 82 | f1of | ⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) | |
| 83 | 80 81 82 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 84 | simpl | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) | |
| 85 | 84 | fveq2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 86 | simpr | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) | |
| 87 | 86 | fveq2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑣 ) ) |
| 88 | 85 87 | oveq12d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 89 | 88 | cnveqd | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 90 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∈ V | |
| 91 | 90 | cnvex | ⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∈ V |
| 92 | 89 9 91 | ovmpoa | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 93 | 92 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 94 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 95 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) | |
| 96 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) | |
| 97 | 94 95 96 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 98 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑣 ∈ 𝑆 ) | |
| 99 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) | |
| 100 | 94 98 99 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 101 | 97 100 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 102 | 101 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 103 | 93 102 | feq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ↔ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 104 | 83 103 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 𝐻 𝑣 ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 105 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝑆 ) | |
| 106 | simpl | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑥 = 𝑢 ) | |
| 107 | 106 | fveq2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 108 | simpr | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑦 = 𝑢 ) | |
| 109 | 108 | fveq2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 110 | 107 109 | oveq12d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 111 | 110 | cnveqd | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 112 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ V | |
| 113 | 112 | cnvex | ⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ V |
| 114 | 111 9 113 | ovmpoa | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 115 | 105 105 114 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑢 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 116 | 115 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) ) |
| 117 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 118 | 3 60 59 117 76 | funcid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 119 | 11 96 | sylan | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 120 | 119 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( Id ‘ 𝑌 ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) |
| 121 | 118 120 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) |
| 122 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 123 | 3 39 40 122 76 76 | ffthf1o | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 124 | 67 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → 𝑋 ∈ Cat ) |
| 125 | 3 39 60 124 76 | catidcl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 126 | f1ocnvfv | ⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ∧ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑢 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) | |
| 127 | 123 125 126 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) ) |
| 128 | 121 127 | mpd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑢 ) ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 129 | 116 128 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝑢 𝐻 𝑢 ) ‘ ( ( Id ‘ 𝑌 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝑋 ) ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ) |
| 130 | 58 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ) |
| 131 | 70 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ 𝐹 : 𝑆 ⟶ 𝑅 ) |
| 132 | simp21 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑢 ∈ 𝑆 ) | |
| 133 | 131 132 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 134 | simp22 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑣 ∈ 𝑆 ) | |
| 135 | 131 134 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 136 | simp23 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑧 ∈ 𝑆 ) | |
| 137 | 131 136 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑅 ) |
| 138 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 139 | 3 39 40 138 133 135 | ffthf1o | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 140 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) |
| 141 | 140 132 96 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 142 | 140 134 99 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) = 𝑣 ) |
| 143 | 141 142 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 144 | 143 | f1oeq3d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 145 | 139 144 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 146 | f1ocnv | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) | |
| 147 | f1of | ⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) | |
| 148 | 145 146 147 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 149 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) | |
| 150 | 148 149 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 151 | 3 39 40 138 135 137 | ffthf1o | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
| 152 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) | |
| 153 | 140 136 152 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 154 | 142 153 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 155 | 154 | f1oeq3d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) |
| 156 | 151 155 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 157 | f1ocnv | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 158 | f1of | ⊢ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) –1-1-onto→ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 159 | 156 157 158 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ⟶ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 160 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) | |
| 161 | 159 160 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ∈ ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 162 | 3 39 62 61 130 133 135 137 150 161 | funcco | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
| 163 | 141 142 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 = 〈 𝑢 , 𝑣 〉 ) |
| 164 | 163 153 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) ) |
| 165 | f1ocnvfv2 | ⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑣 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 ) | |
| 166 | 156 160 165 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) = 𝑔 ) |
| 167 | f1ocnvfv2 | ⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 ) | |
| 168 | 145 149 167 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) = 𝑓 ) |
| 169 | 164 166 168 | oveq123d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) 〉 ( comp ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) |
| 170 | 162 169 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) |
| 171 | 3 39 40 138 133 137 | ffthf1o | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
| 172 | 141 153 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 173 | 172 | f1oeq3d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) |
| 174 | 171 173 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ) |
| 175 | 67 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → 𝑋 ∈ Cat ) |
| 176 | 3 39 62 175 133 135 137 150 161 | catcocl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 177 | f1ocnvfv | ⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑧 ) ∧ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ∈ ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) | |
| 178 | 174 176 177 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) = ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) ) |
| 179 | 170 178 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) |
| 180 | simpl | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑢 ) | |
| 181 | 180 | fveq2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑢 ) ) |
| 182 | simpr | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) | |
| 183 | 182 | fveq2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 184 | 181 183 | oveq12d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 185 | 184 | cnveqd | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 186 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V | |
| 187 | 186 | cnvex | ⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
| 188 | 185 9 187 | ovmpoa | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 189 | 132 136 188 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 190 | 189 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) ) |
| 191 | simpl | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑣 ) | |
| 192 | 191 | fveq2d | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑣 ) ) |
| 193 | simpr | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) | |
| 194 | 193 | fveq2d | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 195 | 192 194 | oveq12d | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 196 | 195 | cnveqd | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑧 ) → ◡ ( ( ◡ 𝐹 ‘ 𝑥 ) 𝐺 ( ◡ 𝐹 ‘ 𝑦 ) ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 197 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V | |
| 198 | 197 | cnvex | ⊢ ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ V |
| 199 | 196 9 198 | ovmpoa | ⊢ ( ( 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑣 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 200 | 134 136 199 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑣 𝐻 𝑧 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 201 | 200 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ) |
| 202 | 132 134 92 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 203 | 202 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) = ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) |
| 204 | 201 203 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) = ( ( ◡ ( ( ◡ 𝐹 ‘ 𝑣 ) 𝐺 ( ◡ 𝐹 ‘ 𝑧 ) ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ‘ 𝑓 ) ) ) |
| 205 | 179 190 204 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ∧ 𝑔 ∈ ( 𝑣 ( Hom ‘ 𝑌 ) 𝑧 ) ) ) → ( ( 𝑢 𝐻 𝑧 ) ‘ ( 𝑔 ( 〈 𝑢 , 𝑣 〉 ( comp ‘ 𝑌 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑣 𝐻 𝑧 ) ‘ 𝑔 ) ( 〈 ( ◡ 𝐹 ‘ 𝑢 ) , ( ◡ 𝐹 ‘ 𝑣 ) 〉 ( comp ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑧 ) ) ( ( 𝑢 𝐻 𝑣 ) ‘ 𝑓 ) ) ) |
| 206 | 4 3 40 39 59 60 61 62 66 67 70 74 104 129 205 | isfuncd | ⊢ ( 𝜑 → ◡ 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ) |
| 207 | 3 58 206 | cofuval2 | ⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( ◡ 𝐹 ∘ 𝐹 ) , ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑅 ↦ ( ( ( 𝐹 ‘ 𝑢 ) 𝐻 ( 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐺 𝑣 ) ) ) 〉 ) |
| 208 | eqid | ⊢ ( idfunc ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) | |
| 209 | 208 3 67 39 | idfuval | ⊢ ( 𝜑 → ( idfunc ‘ 𝑋 ) = 〈 ( I ↾ 𝑅 ) , ( 𝑧 ∈ ( 𝑅 × 𝑅 ) ↦ ( I ↾ ( ( Hom ‘ 𝑋 ) ‘ 𝑧 ) ) ) 〉 ) |
| 210 | 53 207 209 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = ( idfunc ‘ 𝑋 ) ) |
| 211 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 212 | df-br | ⊢ ( 𝐹 ( 𝑋 Func 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 Func 𝑌 ) ) | |
| 213 | 58 212 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 Func 𝑌 ) ) |
| 214 | df-br | ⊢ ( ◡ 𝐹 ( 𝑌 Func 𝑋 ) 𝐻 ↔ 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 Func 𝑋 ) ) | |
| 215 | 206 214 | sylib | ⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 Func 𝑋 ) ) |
| 216 | 1 2 5 211 6 7 6 213 215 | catcco | ⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( 〈 ◡ 𝐹 , 𝐻 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) |
| 217 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 218 | 1 2 217 208 5 6 | catcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) ) |
| 219 | 210 216 218 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 220 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 221 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 222 | 1 | catccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 223 | 5 222 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 224 | 1 2 5 220 6 7 | catchom | ⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 Func 𝑌 ) ) |
| 225 | 213 224 | eleqtrrd | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 226 | 1 2 5 220 7 6 | catchom | ⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 Func 𝑋 ) ) |
| 227 | 215 226 | eleqtrrd | ⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 228 | 2 220 211 217 221 223 6 7 225 227 | issect2 | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ↔ ( 〈 ◡ 𝐹 , 𝐻 〉 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 229 | 219 228 | mpbird | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |
| 230 | f1ococnv2 | ⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑆 ) ) | |
| 231 | 11 230 | syl | ⊢ ( 𝜑 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑆 ) ) |
| 232 | 92 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 𝐻 𝑣 ) = ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) |
| 233 | 232 | coeq2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 234 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → 𝐹 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) 𝐺 ) |
| 235 | 76 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑢 ) ∈ 𝑅 ) |
| 236 | 78 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
| 237 | 3 39 40 234 235 236 | ffthf1o | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ) |
| 238 | 101 | 3impb | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 239 | 238 | f1oeq3d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑢 ) ) ( Hom ‘ 𝑌 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑣 ) ) ) ↔ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 240 | 237 239 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 241 | f1ococnv2 | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) : ( ( ◡ 𝐹 ‘ 𝑢 ) ( Hom ‘ 𝑋 ) ( ◡ 𝐹 ‘ 𝑣 ) ) –1-1-onto→ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) | |
| 242 | 240 241 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ◡ ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 243 | 233 242 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 244 | 243 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) ) |
| 245 | fveq2 | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝑌 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 246 | df-ov | ⊢ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) = ( ( Hom ‘ 𝑌 ) ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 247 | 245 246 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) = ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) |
| 248 | 247 | reseq2d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) = ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 249 | 248 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) = ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( I ↾ ( 𝑢 ( Hom ‘ 𝑌 ) 𝑣 ) ) ) |
| 250 | 244 249 | eqtr4di | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) = ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) ) |
| 251 | 231 250 | opeq12d | ⊢ ( 𝜑 → 〈 ( 𝐹 ∘ ◡ 𝐹 ) , ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) 〉 = 〈 ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) 〉 ) |
| 252 | 4 206 58 | cofuval2 | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) = 〈 ( 𝐹 ∘ ◡ 𝐹 ) , ( 𝑢 ∈ 𝑆 , 𝑣 ∈ 𝑆 ↦ ( ( ( ◡ 𝐹 ‘ 𝑢 ) 𝐺 ( ◡ 𝐹 ‘ 𝑣 ) ) ∘ ( 𝑢 𝐻 𝑣 ) ) ) 〉 ) |
| 253 | eqid | ⊢ ( idfunc ‘ 𝑌 ) = ( idfunc ‘ 𝑌 ) | |
| 254 | 253 4 66 40 | idfuval | ⊢ ( 𝜑 → ( idfunc ‘ 𝑌 ) = 〈 ( I ↾ 𝑆 ) , ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( I ↾ ( ( Hom ‘ 𝑌 ) ‘ 𝑧 ) ) ) 〉 ) |
| 255 | 251 252 254 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) = ( idfunc ‘ 𝑌 ) ) |
| 256 | 1 2 5 211 7 6 7 215 213 | catcco | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( 〈 𝐹 , 𝐺 〉 ∘func 〈 ◡ 𝐹 , 𝐻 〉 ) ) |
| 257 | 1 2 217 253 5 7 | catcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( idfunc ‘ 𝑌 ) ) |
| 258 | 255 256 257 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 259 | 2 220 211 217 221 223 7 6 227 225 | issect2 | ⊢ ( 𝜑 → ( 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ↔ ( 〈 𝐹 , 𝐺 〉 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 260 | 258 259 | mpbird | ⊢ ( 𝜑 → 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) |
| 261 | 2 8 223 6 7 221 | isinv | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ↔ ( 〈 𝐹 , 𝐺 〉 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ∧ 〈 ◡ 𝐹 , 𝐻 〉 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 〈 𝐹 , 𝐺 〉 ) ) ) |
| 262 | 229 260 261 | mpbir2and | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ( 𝑋 𝐼 𝑌 ) 〈 ◡ 𝐹 , 𝐻 〉 ) |