This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofuval2.b | |- B = ( Base ` C ) |
|
| cofuval2.f | |- ( ph -> F ( C Func D ) G ) |
||
| cofuval2.x | |- ( ph -> H ( D Func E ) K ) |
||
| Assertion | cofuval2 | |- ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval2.b | |- B = ( Base ` C ) |
|
| 2 | cofuval2.f | |- ( ph -> F ( C Func D ) G ) |
|
| 3 | cofuval2.x | |- ( ph -> H ( D Func E ) K ) |
|
| 4 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 5 | 2 4 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 6 | df-br | |- ( H ( D Func E ) K <-> <. H , K >. e. ( D Func E ) ) |
|
| 7 | 3 6 | sylib | |- ( ph -> <. H , K >. e. ( D Func E ) ) |
| 8 | 1 5 7 | cofuval | |- ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) >. ) |
| 9 | relfunc | |- Rel ( D Func E ) |
|
| 10 | brrelex12 | |- ( ( Rel ( D Func E ) /\ H ( D Func E ) K ) -> ( H e. _V /\ K e. _V ) ) |
|
| 11 | 9 3 10 | sylancr | |- ( ph -> ( H e. _V /\ K e. _V ) ) |
| 12 | op1stg | |- ( ( H e. _V /\ K e. _V ) -> ( 1st ` <. H , K >. ) = H ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( 1st ` <. H , K >. ) = H ) |
| 14 | relfunc | |- Rel ( C Func D ) |
|
| 15 | brrelex12 | |- ( ( Rel ( C Func D ) /\ F ( C Func D ) G ) -> ( F e. _V /\ G e. _V ) ) |
|
| 16 | 14 2 15 | sylancr | |- ( ph -> ( F e. _V /\ G e. _V ) ) |
| 17 | op1stg | |- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 19 | 13 18 | coeq12d | |- ( ph -> ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) = ( H o. F ) ) |
| 20 | op2ndg | |- ( ( H e. _V /\ K e. _V ) -> ( 2nd ` <. H , K >. ) = K ) |
|
| 21 | 11 20 | syl | |- ( ph -> ( 2nd ` <. H , K >. ) = K ) |
| 22 | 21 | 3ad2ant1 | |- ( ( ph /\ x e. B /\ y e. B ) -> ( 2nd ` <. H , K >. ) = K ) |
| 23 | 18 | 3ad2ant1 | |- ( ( ph /\ x e. B /\ y e. B ) -> ( 1st ` <. F , G >. ) = F ) |
| 24 | 23 | fveq1d | |- ( ( ph /\ x e. B /\ y e. B ) -> ( ( 1st ` <. F , G >. ) ` x ) = ( F ` x ) ) |
| 25 | 23 | fveq1d | |- ( ( ph /\ x e. B /\ y e. B ) -> ( ( 1st ` <. F , G >. ) ` y ) = ( F ` y ) ) |
| 26 | 22 24 25 | oveq123d | |- ( ( ph /\ x e. B /\ y e. B ) -> ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 27 | op2ndg | |- ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 28 | 16 27 | syl | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 29 | 28 | 3ad2ant1 | |- ( ( ph /\ x e. B /\ y e. B ) -> ( 2nd ` <. F , G >. ) = G ) |
| 30 | 29 | oveqd | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x ( 2nd ` <. F , G >. ) y ) = ( x G y ) ) |
| 31 | 26 30 | coeq12d | |- ( ( ph /\ x e. B /\ y e. B ) -> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) = ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) |
| 32 | 31 | mpoeq3dva | |- ( ph -> ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) = ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) ) |
| 33 | 19 32 | opeq12d | |- ( ph -> <. ( ( 1st ` <. H , K >. ) o. ( 1st ` <. F , G >. ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` <. F , G >. ) ` x ) ( 2nd ` <. H , K >. ) ( ( 1st ` <. F , G >. ) ` y ) ) o. ( x ( 2nd ` <. F , G >. ) y ) ) ) >. = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. ) |
| 34 | 8 33 | eqtrd | |- ( ph -> ( <. H , K >. o.func <. F , G >. ) = <. ( H o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) K ( F ` y ) ) o. ( x G y ) ) ) >. ) |