This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfv1 | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( `' F ` ( F ` C ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv1 | |- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |
|
| 2 | 1 | fveq1d | |- ( F : A -1-1-onto-> B -> ( ( `' F o. F ) ` C ) = ( ( _I |` A ) ` C ) ) |
| 3 | 2 | adantr | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( `' F o. F ) ` C ) = ( ( _I |` A ) ` C ) ) |
| 4 | f1of | |- ( F : A -1-1-onto-> B -> F : A --> B ) |
|
| 5 | fvco3 | |- ( ( F : A --> B /\ C e. A ) -> ( ( `' F o. F ) ` C ) = ( `' F ` ( F ` C ) ) ) |
|
| 6 | 4 5 | sylan | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( `' F o. F ) ` C ) = ( `' F ` ( F ` C ) ) ) |
| 7 | fvresi | |- ( C e. A -> ( ( _I |` A ) ` C ) = C ) |
|
| 8 | 7 | adantl | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( _I |` A ) ` C ) = C ) |
| 9 | 3 6 8 | 3eqtr3d | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( `' F ` ( F ` C ) ) = C ) |