This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1 ( 𝜑 → ¬ 𝑥𝐴 )
Assertion eq0rdv ( 𝜑𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 eq0rdv.1 ( 𝜑 → ¬ 𝑥𝐴 )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ¬ 𝑥𝐴 )
3 eq0 ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
4 2 3 sylibr ( 𝜑𝐴 = ∅ )