This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumeq1 | ⊢ ( 𝐴 = 𝐵 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ) ) | |
| 2 | simpl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝑛 ∈ ℤ ) → 𝐴 = 𝐵 ) | |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) |
| 4 | 3 | ifbid | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝑛 ∈ ℤ ) → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) = if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) |
| 5 | 4 | mpteq2dva | ⊢ ( 𝐴 = 𝐵 → ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) |
| 6 | 5 | seqeq3d | ⊢ ( 𝐴 = 𝐵 → seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) = seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ) |
| 7 | 6 | breq1d | ⊢ ( 𝐴 = 𝐵 → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 8 | 1 7 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ) ) |
| 10 | f1oeq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ) ) | |
| 11 | 10 | anbi1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 12 | 11 | exbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 13 | 12 | rexbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 14 | 9 13 | orbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) |
| 15 | 14 | iotabidv | ⊢ ( 𝐴 = 𝐵 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) |
| 16 | df-sum | ⊢ Σ 𝑘 ∈ 𝐴 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | |
| 17 | df-sum | ⊢ Σ 𝑘 ∈ 𝐵 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐵 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | |
| 18 | 15 16 17 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |