This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D have a common element Z , then X = Y . (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disji.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| disji.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | ||
| Assertion | disji | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷 ) ) → 𝑋 = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disji.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| 2 | disji.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | |
| 3 | inelcm | ⊢ ( ( 𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) | |
| 4 | 1 2 | disji2 | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 5 | 4 | 3expia | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 ≠ 𝑌 → ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 6 | 5 | necon1d | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ 𝐷 ) ≠ ∅ → 𝑋 = 𝑌 ) ) |
| 7 | 6 | 3impia | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) → 𝑋 = 𝑌 ) |
| 8 | 3 7 | syl3an3 | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷 ) ) → 𝑋 = 𝑌 ) |