This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| tsmsadd.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) | ||
| tsmsadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsadd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsadd.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsadd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| tsmsadd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums 𝐻 ) ) | ||
| Assertion | tsmsadd | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f + 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | tsmsadd.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmsadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) | |
| 5 | tsmsadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmsadd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmsadd.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 8 | tsmsadd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 9 | tsmsadd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums 𝐻 ) ) | |
| 10 | tmdtps | ⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopSp ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 12 | 1 3 11 5 6 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 13 | 12 8 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 14 | 1 3 11 5 7 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐻 ) ⊆ 𝐵 ) |
| 15 | 14 9 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 16 | eqid | ⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) | |
| 17 | 1 2 16 | plusfval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 18 | 13 15 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 19 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 20 | 1 19 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 21 | 11 20 | sylib | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 22 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 23 | eqid | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) = ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) | |
| 24 | eqid | ⊢ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) = ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) | |
| 25 | 22 23 24 5 | tsmsfbas | ⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 26 | fgcl | ⊢ ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 28 | 1 22 3 5 6 | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝐵 ) |
| 29 | 1 22 3 5 7 | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ∈ 𝐵 ) |
| 30 | 1 19 22 24 3 5 6 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 31 | 8 30 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) ) ) |
| 32 | 1 19 22 24 3 5 7 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐻 ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) |
| 33 | 9 32 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) |
| 34 | 19 16 | tmdcn | ⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 36 | 13 15 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 37 | txtopon | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ∧ ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) → ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) ) | |
| 38 | 21 21 37 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) ) |
| 39 | toponuni | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) → ( 𝐵 × 𝐵 ) = ∪ ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ∪ ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ) |
| 41 | 36 40 | eleqtrd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ∪ ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ) |
| 42 | eqid | ⊢ ∪ ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) = ∪ ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) | |
| 43 | 42 | cncnpi | ⊢ ( ( ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ∪ ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) CnP ( TopOpen ‘ 𝐺 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 44 | 35 41 43 | syl2anc | ⊢ ( 𝜑 → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) CnP ( TopOpen ‘ 𝐺 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 45 | 21 21 27 28 29 31 33 44 | flfcnp2 | ⊢ ( 𝜑 → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) ) |
| 46 | 18 45 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) ) |
| 47 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 48 | 3 47 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 49 | 1 2 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 50 | 49 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 51 | 48 50 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 52 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 53 | 51 6 7 5 5 52 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 54 | 1 19 22 24 3 5 53 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ∘f + 𝐻 ) ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) ) ) ) ) |
| 55 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 56 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 57 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ∈ Fin ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 59 | elfpw | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) ) | |
| 60 | 59 | simplbi | ⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ⊆ 𝐴 ) |
| 61 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) | |
| 62 | 6 60 61 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) |
| 63 | fssres | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ⊆ 𝐴 ) → ( 𝐻 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) | |
| 64 | 7 60 63 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) |
| 65 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 66 | 62 58 65 | fdmfifsupp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 67 | 64 58 65 | fdmfifsupp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 ↾ 𝑧 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 68 | 1 55 2 56 58 62 64 66 67 | gsumadd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑧 ) ∘f + ( 𝐻 ↾ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) + ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) |
| 69 | 6 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 70 | 7 5 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 71 | offres | ⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) = ( ( 𝐹 ↾ 𝑧 ) ∘f + ( 𝐻 ↾ 𝑧 ) ) ) | |
| 72 | 69 70 71 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) = ( ( 𝐹 ↾ 𝑧 ) ∘f + ( 𝐻 ↾ 𝑧 ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) = ( ( 𝐹 ↾ 𝑧 ) ∘f + ( 𝐻 ↾ 𝑧 ) ) ) |
| 74 | 73 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ 𝑧 ) ∘f + ( 𝐻 ↾ 𝑧 ) ) ) ) |
| 75 | 1 2 16 | plusfval | ⊢ ( ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝐵 ∧ ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ∈ 𝐵 ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) + ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) |
| 76 | 28 29 75 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) + ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) |
| 77 | 68 74 76 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) |
| 78 | 77 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) |
| 79 | 78 | fveq2d | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( ( 𝐹 ∘f + 𝐻 ) ↾ 𝑧 ) ) ) ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) ) |
| 80 | 54 79 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ∘f + 𝐻 ) ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑦 ⊆ 𝑧 } ) ) ) ‘ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ( +𝑓 ‘ 𝐺 ) ( 𝐺 Σg ( 𝐻 ↾ 𝑧 ) ) ) ) ) ) |
| 81 | 46 80 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f + 𝐻 ) ) ) |