This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite partial sums of a function F are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmslem1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmslem1.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | ||
| tsmslem1.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmslem1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| tsmslem1.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑋 ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmslem1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmslem1.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| 3 | tsmslem1.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmslem1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 5 | tsmslem1.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 10 | 8 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 11 | elfpw | ⊢ ( 𝑋 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin ) ) | |
| 12 | 11 | simplbi | ⊢ ( 𝑋 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑋 ⊆ 𝐴 ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ 𝐴 ) |
| 14 | 9 13 | fssresd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ 𝐵 ) |
| 15 | 10 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ Fin ) |
| 16 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 17 | 14 15 16 | fdmfifsupp | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ↾ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 18 | 1 6 7 8 14 17 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑋 ) ) ∈ 𝐵 ) |