This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsadd.b | |- B = ( Base ` G ) |
|
| tsmsadd.p | |- .+ = ( +g ` G ) |
||
| tsmsadd.1 | |- ( ph -> G e. CMnd ) |
||
| tsmsadd.2 | |- ( ph -> G e. TopMnd ) |
||
| tsmsadd.a | |- ( ph -> A e. V ) |
||
| tsmsadd.f | |- ( ph -> F : A --> B ) |
||
| tsmsadd.h | |- ( ph -> H : A --> B ) |
||
| tsmsadd.x | |- ( ph -> X e. ( G tsums F ) ) |
||
| tsmsadd.y | |- ( ph -> Y e. ( G tsums H ) ) |
||
| Assertion | tsmsadd | |- ( ph -> ( X .+ Y ) e. ( G tsums ( F oF .+ H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsadd.b | |- B = ( Base ` G ) |
|
| 2 | tsmsadd.p | |- .+ = ( +g ` G ) |
|
| 3 | tsmsadd.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tsmsadd.2 | |- ( ph -> G e. TopMnd ) |
|
| 5 | tsmsadd.a | |- ( ph -> A e. V ) |
|
| 6 | tsmsadd.f | |- ( ph -> F : A --> B ) |
|
| 7 | tsmsadd.h | |- ( ph -> H : A --> B ) |
|
| 8 | tsmsadd.x | |- ( ph -> X e. ( G tsums F ) ) |
|
| 9 | tsmsadd.y | |- ( ph -> Y e. ( G tsums H ) ) |
|
| 10 | tmdtps | |- ( G e. TopMnd -> G e. TopSp ) |
|
| 11 | 4 10 | syl | |- ( ph -> G e. TopSp ) |
| 12 | 1 3 11 5 6 | tsmscl | |- ( ph -> ( G tsums F ) C_ B ) |
| 13 | 12 8 | sseldd | |- ( ph -> X e. B ) |
| 14 | 1 3 11 5 7 | tsmscl | |- ( ph -> ( G tsums H ) C_ B ) |
| 15 | 14 9 | sseldd | |- ( ph -> Y e. B ) |
| 16 | eqid | |- ( +f ` G ) = ( +f ` G ) |
|
| 17 | 1 2 16 | plusfval | |- ( ( X e. B /\ Y e. B ) -> ( X ( +f ` G ) Y ) = ( X .+ Y ) ) |
| 18 | 13 15 17 | syl2anc | |- ( ph -> ( X ( +f ` G ) Y ) = ( X .+ Y ) ) |
| 19 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 20 | 1 19 | istps | |- ( G e. TopSp <-> ( TopOpen ` G ) e. ( TopOn ` B ) ) |
| 21 | 11 20 | sylib | |- ( ph -> ( TopOpen ` G ) e. ( TopOn ` B ) ) |
| 22 | eqid | |- ( ~P A i^i Fin ) = ( ~P A i^i Fin ) |
|
| 23 | eqid | |- ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) = ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) |
|
| 24 | eqid | |- ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) = ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) |
|
| 25 | 22 23 24 5 | tsmsfbas | |- ( ph -> ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) e. ( fBas ` ( ~P A i^i Fin ) ) ) |
| 26 | fgcl | |- ( ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) e. ( fBas ` ( ~P A i^i Fin ) ) -> ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
|
| 27 | 25 26 | syl | |- ( ph -> ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
| 28 | 1 22 3 5 6 | tsmslem1 | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` z ) ) e. B ) |
| 29 | 1 22 3 5 7 | tsmslem1 | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( H |` z ) ) e. B ) |
| 30 | 1 19 22 24 3 5 6 | tsmsval | |- ( ph -> ( G tsums F ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 31 | 8 30 | eleqtrd | |- ( ph -> X e. ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` z ) ) ) ) ) |
| 32 | 1 19 22 24 3 5 7 | tsmsval | |- ( ph -> ( G tsums H ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( H |` z ) ) ) ) ) |
| 33 | 9 32 | eleqtrd | |- ( ph -> Y e. ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( H |` z ) ) ) ) ) |
| 34 | 19 16 | tmdcn | |- ( G e. TopMnd -> ( +f ` G ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 35 | 4 34 | syl | |- ( ph -> ( +f ` G ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) ) |
| 36 | 13 15 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 37 | txtopon | |- ( ( ( TopOpen ` G ) e. ( TopOn ` B ) /\ ( TopOpen ` G ) e. ( TopOn ` B ) ) -> ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) e. ( TopOn ` ( B X. B ) ) ) |
|
| 38 | 21 21 37 | syl2anc | |- ( ph -> ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) e. ( TopOn ` ( B X. B ) ) ) |
| 39 | toponuni | |- ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) e. ( TopOn ` ( B X. B ) ) -> ( B X. B ) = U. ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) ) |
|
| 40 | 38 39 | syl | |- ( ph -> ( B X. B ) = U. ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) ) |
| 41 | 36 40 | eleqtrd | |- ( ph -> <. X , Y >. e. U. ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) ) |
| 42 | eqid | |- U. ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) = U. ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) |
|
| 43 | 42 | cncnpi | |- ( ( ( +f ` G ) e. ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) Cn ( TopOpen ` G ) ) /\ <. X , Y >. e. U. ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) ) -> ( +f ` G ) e. ( ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) CnP ( TopOpen ` G ) ) ` <. X , Y >. ) ) |
| 44 | 35 41 43 | syl2anc | |- ( ph -> ( +f ` G ) e. ( ( ( ( TopOpen ` G ) tX ( TopOpen ` G ) ) CnP ( TopOpen ` G ) ) ` <. X , Y >. ) ) |
| 45 | 21 21 27 28 29 31 33 44 | flfcnp2 | |- ( ph -> ( X ( +f ` G ) Y ) e. ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) ) ) ) |
| 46 | 18 45 | eqeltrrd | |- ( ph -> ( X .+ Y ) e. ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) ) ) ) |
| 47 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 48 | 3 47 | syl | |- ( ph -> G e. Mnd ) |
| 49 | 1 2 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 50 | 49 | 3expb | |- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 51 | 48 50 | sylan | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 52 | inidm | |- ( A i^i A ) = A |
|
| 53 | 51 6 7 5 5 52 | off | |- ( ph -> ( F oF .+ H ) : A --> B ) |
| 54 | 1 19 22 24 3 5 53 | tsmsval | |- ( ph -> ( G tsums ( F oF .+ H ) ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( ( F oF .+ H ) |` z ) ) ) ) ) |
| 55 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 56 | 3 | adantr | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> G e. CMnd ) |
| 57 | elinel2 | |- ( z e. ( ~P A i^i Fin ) -> z e. Fin ) |
|
| 58 | 57 | adantl | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> z e. Fin ) |
| 59 | elfpw | |- ( z e. ( ~P A i^i Fin ) <-> ( z C_ A /\ z e. Fin ) ) |
|
| 60 | 59 | simplbi | |- ( z e. ( ~P A i^i Fin ) -> z C_ A ) |
| 61 | fssres | |- ( ( F : A --> B /\ z C_ A ) -> ( F |` z ) : z --> B ) |
|
| 62 | 6 60 61 | syl2an | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( F |` z ) : z --> B ) |
| 63 | fssres | |- ( ( H : A --> B /\ z C_ A ) -> ( H |` z ) : z --> B ) |
|
| 64 | 7 60 63 | syl2an | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( H |` z ) : z --> B ) |
| 65 | fvexd | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( 0g ` G ) e. _V ) |
|
| 66 | 62 58 65 | fdmfifsupp | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( F |` z ) finSupp ( 0g ` G ) ) |
| 67 | 64 58 65 | fdmfifsupp | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( H |` z ) finSupp ( 0g ` G ) ) |
| 68 | 1 55 2 56 58 62 64 66 67 | gsumadd | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( ( F |` z ) oF .+ ( H |` z ) ) ) = ( ( G gsum ( F |` z ) ) .+ ( G gsum ( H |` z ) ) ) ) |
| 69 | 6 5 | fexd | |- ( ph -> F e. _V ) |
| 70 | 7 5 | fexd | |- ( ph -> H e. _V ) |
| 71 | offres | |- ( ( F e. _V /\ H e. _V ) -> ( ( F oF .+ H ) |` z ) = ( ( F |` z ) oF .+ ( H |` z ) ) ) |
|
| 72 | 69 70 71 | syl2anc | |- ( ph -> ( ( F oF .+ H ) |` z ) = ( ( F |` z ) oF .+ ( H |` z ) ) ) |
| 73 | 72 | adantr | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( ( F oF .+ H ) |` z ) = ( ( F |` z ) oF .+ ( H |` z ) ) ) |
| 74 | 73 | oveq2d | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( ( F oF .+ H ) |` z ) ) = ( G gsum ( ( F |` z ) oF .+ ( H |` z ) ) ) ) |
| 75 | 1 2 16 | plusfval | |- ( ( ( G gsum ( F |` z ) ) e. B /\ ( G gsum ( H |` z ) ) e. B ) -> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) = ( ( G gsum ( F |` z ) ) .+ ( G gsum ( H |` z ) ) ) ) |
| 76 | 28 29 75 | syl2anc | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) = ( ( G gsum ( F |` z ) ) .+ ( G gsum ( H |` z ) ) ) ) |
| 77 | 68 74 76 | 3eqtr4d | |- ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> ( G gsum ( ( F oF .+ H ) |` z ) ) = ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) ) |
| 78 | 77 | mpteq2dva | |- ( ph -> ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( ( F oF .+ H ) |` z ) ) ) = ( z e. ( ~P A i^i Fin ) |-> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) ) ) |
| 79 | 78 | fveq2d | |- ( ph -> ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( G gsum ( ( F oF .+ H ) |` z ) ) ) ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) ) ) ) |
| 80 | 54 79 | eqtrd | |- ( ph -> ( G tsums ( F oF .+ H ) ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P A i^i Fin ) filGen ran ( y e. ( ~P A i^i Fin ) |-> { z e. ( ~P A i^i Fin ) | y C_ z } ) ) ) ` ( z e. ( ~P A i^i Fin ) |-> ( ( G gsum ( F |` z ) ) ( +f ` G ) ( G gsum ( H |` z ) ) ) ) ) ) |
| 81 | 46 80 | eleqtrrd | |- ( ph -> ( X .+ Y ) e. ( G tsums ( F oF .+ H ) ) ) |