This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsval.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tsmsval.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | ||
| tsmsval.l | ⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | ||
| tsmsval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| tsmsval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| tsmsval.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsval.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tsmsval.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| 4 | tsmsval.l | ⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | |
| 5 | tsmsval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 6 | tsmsval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 7 | tsmsval.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 10 | fex2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V ) → 𝐹 ∈ V ) | |
| 11 | 7 6 9 10 | syl3anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 12 | 7 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 13 | 1 2 3 4 5 11 12 | tsmsval2 | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |