This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flfcnp2.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| flfcnp2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| flfcnp2.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑍 ) ) | ||
| flfcnp2.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ 𝑋 ) | ||
| flfcnp2.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ 𝑌 ) | ||
| flfcnp2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ) | ||
| flfcnp2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ) ) | ||
| flfcnp2.o | ⊢ ( 𝜑 → 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) | ||
| Assertion | flfcnp2 | ⊢ ( 𝜑 → ( 𝑅 𝑂 𝑆 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfcnp2.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | flfcnp2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | flfcnp2.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑍 ) ) | |
| 4 | flfcnp2.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ 𝑋 ) | |
| 5 | flfcnp2.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ 𝑌 ) | |
| 6 | flfcnp2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ) | |
| 7 | flfcnp2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ) ) | |
| 8 | flfcnp2.o | ⊢ ( 𝜑 → 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) | |
| 9 | df-ov | ⊢ ( 𝑅 𝑂 𝑆 ) = ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) | |
| 10 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 12 | 4 5 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 13 | 12 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) |
| 14 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ 𝑋 ) |
| 15 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ 𝑌 ) |
| 16 | nfcv | ⊢ Ⅎ 𝑦 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 | |
| 17 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) | |
| 18 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 19 | 17 18 | nfop | ⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) 〉 |
| 20 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) ) | |
| 22 | 20 21 | opeq12d | ⊢ ( 𝑥 = 𝑦 → 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
| 23 | 16 19 22 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑦 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
| 24 | 1 2 3 14 15 23 | txflf | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) ↔ ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
| 25 | 6 7 24 | mpbir2and | ⊢ ( 𝜑 → 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) ) |
| 26 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝑍 ) | |
| 27 | eqid | ⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) | |
| 28 | 27 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 29 | 26 4 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 30 | eqid | ⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) | |
| 31 | 30 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 32 | 26 5 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 33 | 29 32 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 34 | 33 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 35 | 34 | fveq2d | ⊢ ( 𝜑 → ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) = ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 36 | 25 35 | eleqtrd | ⊢ ( 𝜑 → 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 37 | flfcnp | ⊢ ( ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ∧ 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) ) → ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) ) | |
| 38 | 11 3 13 36 8 37 | syl32anc | ⊢ ( 𝜑 → ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 39 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) | |
| 40 | cnptop2 | ⊢ ( 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) → 𝑁 ∈ Top ) | |
| 41 | 8 40 | syl | ⊢ ( 𝜑 → 𝑁 ∈ Top ) |
| 42 | toptopon2 | ⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) | |
| 43 | 41 42 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
| 44 | cnpf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ 𝑂 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝑁 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) | |
| 45 | 11 43 8 44 | syl3anc | ⊢ ( 𝜑 → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) |
| 46 | 45 | feqmptd | ⊢ ( 𝜑 → 𝑂 = ( 𝑦 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑂 ‘ 𝑦 ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑦 = 〈 𝐴 , 𝐵 〉 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 48 | df-ov | ⊢ ( 𝐴 𝑂 𝐵 ) = ( 𝑂 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 49 | 47 48 | eqtr4di | ⊢ ( 𝑦 = 〈 𝐴 , 𝐵 〉 → ( 𝑂 ‘ 𝑦 ) = ( 𝐴 𝑂 𝐵 ) ) |
| 50 | 12 39 46 49 | fmptco | ⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) |
| 51 | 50 | fveq2d | ⊢ ( 𝜑 → ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑂 ∘ ( 𝑥 ∈ 𝑍 ↦ 〈 𝐴 , 𝐵 〉 ) ) ) = ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |
| 52 | 38 51 | eleqtrd | ⊢ ( 𝜑 → ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |
| 53 | 9 52 | eqeltrid | ⊢ ( 𝜑 → ( 𝑅 𝑂 𝑆 ) ∈ ( ( 𝑁 fLimf 𝐿 ) ‘ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 𝑂 𝐵 ) ) ) ) |