This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | offres | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ↾ 𝐷 ) = ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | ⊢ ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) → 𝑥 ∈ 𝐷 ) | |
| 2 | fvres | ⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | fvres | ⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 4 | 2 3 | oveq12d | ⊢ ( 𝑥 ∈ 𝐷 → ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) → ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 6 | 5 | mpteq2ia | ⊢ ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 7 | inindi | ⊢ ( 𝐷 ∩ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( ( 𝐷 ∩ dom 𝐹 ) ∩ ( 𝐷 ∩ dom 𝐺 ) ) | |
| 8 | incom | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) = ( 𝐷 ∩ ( dom 𝐹 ∩ dom 𝐺 ) ) | |
| 9 | dmres | ⊢ dom ( 𝐹 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝐹 ) | |
| 10 | dmres | ⊢ dom ( 𝐺 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝐺 ) | |
| 11 | 9 10 | ineq12i | ⊢ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) = ( ( 𝐷 ∩ dom 𝐹 ) ∩ ( 𝐷 ∩ dom 𝐺 ) ) |
| 12 | 7 8 11 | 3eqtr4ri | ⊢ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) = ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) |
| 13 | 12 | mpteq1i | ⊢ ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
| 14 | resmpt3 | ⊢ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝐷 ) = ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) | |
| 15 | 6 13 14 | 3eqtr4ri | ⊢ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝐷 ) = ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
| 16 | offval3 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 17 | 16 | reseq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ↾ 𝐷 ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝐷 ) ) |
| 18 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐷 ) ∈ V ) | |
| 19 | resexg | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ↾ 𝐷 ) ∈ V ) | |
| 20 | offval3 | ⊢ ( ( ( 𝐹 ↾ 𝐷 ) ∈ V ∧ ( 𝐺 ↾ 𝐷 ) ∈ V ) → ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) ) |
| 22 | 15 17 21 | 3eqtr4a | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ↾ 𝐷 ) = ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) ) |