This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of all sets of the form F ( z ) = { y e. S | z C_ y } , which can be read as the set of all finite subsets of A which contain z as a subset, for each finite subset z of A , form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsfbas.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| tsmsfbas.f | ⊢ 𝐹 = ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | ||
| tsmsfbas.l | ⊢ 𝐿 = ran 𝐹 | ||
| tsmsfbas.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| Assertion | tsmsfbas | ⊢ ( 𝜑 → 𝐿 ∈ ( fBas ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsfbas.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| 2 | tsmsfbas.f | ⊢ 𝐹 = ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | |
| 3 | tsmsfbas.l | ⊢ 𝐿 = ran 𝐹 | |
| 4 | tsmsfbas.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 5 | elex | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) | |
| 6 | ssrab2 | ⊢ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ 𝑆 | |
| 7 | pwexg | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) | |
| 8 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 10 | 1 9 | eqeltrid | ⊢ ( 𝐴 ∈ V → 𝑆 ∈ V ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → 𝑆 ∈ V ) |
| 12 | elpw2g | ⊢ ( 𝑆 ∈ V → ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ 𝒫 𝑆 ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ 𝑆 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ 𝒫 𝑆 ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ 𝑆 ) ) |
| 14 | 6 13 | mpbiri | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ 𝒫 𝑆 ) |
| 15 | 14 2 | fmptd | ⊢ ( 𝐴 ∈ V → 𝐹 : 𝑆 ⟶ 𝒫 𝑆 ) |
| 16 | 15 | frnd | ⊢ ( 𝐴 ∈ V → ran 𝐹 ⊆ 𝒫 𝑆 ) |
| 17 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 18 | 0fi | ⊢ ∅ ∈ Fin | |
| 19 | elfpw | ⊢ ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ⊆ 𝐴 ∧ ∅ ∈ Fin ) ) | |
| 20 | 17 18 19 | mpbir2an | ⊢ ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) |
| 21 | 20 1 | eleqtrri | ⊢ ∅ ∈ 𝑆 |
| 22 | 0ss | ⊢ ∅ ⊆ 𝑦 | |
| 23 | 22 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑆 ∅ ⊆ 𝑦 |
| 24 | rabid2 | ⊢ ( 𝑆 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) | |
| 25 | sseq1 | ⊢ ( 𝑧 = ∅ → ( 𝑧 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦 ) ) | |
| 26 | 25 | ralbidv | ⊢ ( 𝑧 = ∅ → ( ∀ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 ∅ ⊆ 𝑦 ) ) |
| 27 | 24 26 | bitrid | ⊢ ( 𝑧 = ∅ → ( 𝑆 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ↔ ∀ 𝑦 ∈ 𝑆 ∅ ⊆ 𝑦 ) ) |
| 28 | 27 | rspcev | ⊢ ( ( ∅ ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ∅ ⊆ 𝑦 ) → ∃ 𝑧 ∈ 𝑆 𝑆 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
| 29 | 21 23 28 | mp2an | ⊢ ∃ 𝑧 ∈ 𝑆 𝑆 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } |
| 30 | 2 | elrnmpt | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑆 𝑆 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
| 31 | 10 30 | syl | ⊢ ( 𝐴 ∈ V → ( 𝑆 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑆 𝑆 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
| 32 | 29 31 | mpbiri | ⊢ ( 𝐴 ∈ V → 𝑆 ∈ ran 𝐹 ) |
| 33 | 32 | ne0d | ⊢ ( 𝐴 ∈ V → ran 𝐹 ≠ ∅ ) |
| 34 | simpr | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 35 | ssid | ⊢ 𝑧 ⊆ 𝑧 | |
| 36 | sseq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ 𝑧 ) ) | |
| 37 | 36 | rspcev | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑧 ⊆ 𝑧 ) → ∃ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) |
| 38 | 34 35 37 | sylancl | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → ∃ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) |
| 39 | rabn0 | ⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) | |
| 40 | 38 39 | sylibr | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ≠ ∅ ) |
| 41 | 40 | necomd | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → ∅ ≠ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
| 42 | 41 | neneqd | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ 𝑆 ) → ¬ ∅ = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
| 43 | 42 | nrexdv | ⊢ ( 𝐴 ∈ V → ¬ ∃ 𝑧 ∈ 𝑆 ∅ = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
| 44 | 0ex | ⊢ ∅ ∈ V | |
| 45 | 2 | elrnmpt | ⊢ ( ∅ ∈ V → ( ∅ ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑆 ∅ = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
| 46 | 44 45 | ax-mp | ⊢ ( ∅ ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑆 ∅ = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
| 47 | 43 46 | sylnibr | ⊢ ( 𝐴 ∈ V → ¬ ∅ ∈ ran 𝐹 ) |
| 48 | df-nel | ⊢ ( ∅ ∉ ran 𝐹 ↔ ¬ ∅ ∈ ran 𝐹 ) | |
| 49 | 47 48 | sylibr | ⊢ ( 𝐴 ∈ V → ∅ ∉ ran 𝐹 ) |
| 50 | elfpw | ⊢ ( 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑢 ⊆ 𝐴 ∧ 𝑢 ∈ Fin ) ) | |
| 51 | 50 | simplbi | ⊢ ( 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑢 ⊆ 𝐴 ) |
| 52 | 51 1 | eleq2s | ⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ⊆ 𝐴 ) |
| 53 | elfpw | ⊢ ( 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ∈ Fin ) ) | |
| 54 | 53 | simplbi | ⊢ ( 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑣 ⊆ 𝐴 ) |
| 55 | 54 1 | eleq2s | ⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ⊆ 𝐴 ) |
| 56 | 52 55 | anim12i | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴 ) ) |
| 57 | unss | ⊢ ( ( 𝑢 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴 ) ↔ ( 𝑢 ∪ 𝑣 ) ⊆ 𝐴 ) | |
| 58 | 56 57 | sylib | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 ∪ 𝑣 ) ⊆ 𝐴 ) |
| 59 | elinel2 | ⊢ ( 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑢 ∈ Fin ) | |
| 60 | 59 1 | eleq2s | ⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ∈ Fin ) |
| 61 | elinel2 | ⊢ ( 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑣 ∈ Fin ) | |
| 62 | 61 1 | eleq2s | ⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ∈ Fin ) |
| 63 | unfi | ⊢ ( ( 𝑢 ∈ Fin ∧ 𝑣 ∈ Fin ) → ( 𝑢 ∪ 𝑣 ) ∈ Fin ) | |
| 64 | 60 62 63 | syl2an | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 ∪ 𝑣 ) ∈ Fin ) |
| 65 | elfpw | ⊢ ( ( 𝑢 ∪ 𝑣 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑢 ∪ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑢 ∪ 𝑣 ) ∈ Fin ) ) | |
| 66 | 58 64 65 | sylanbrc | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 ∪ 𝑣 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 67 | 66 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 ∪ 𝑣 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 68 | 67 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ) |
| 69 | eqidd | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) | |
| 70 | sseq1 | ⊢ ( 𝑎 = ( 𝑢 ∪ 𝑣 ) → ( 𝑎 ⊆ 𝑦 ↔ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 ) ) | |
| 71 | 70 | rabbidv | ⊢ ( 𝑎 = ( 𝑢 ∪ 𝑣 ) → { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) |
| 72 | 71 | rspceeqv | ⊢ ( ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) → ∃ 𝑎 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) |
| 73 | 68 69 72 | syl2anc | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ∃ 𝑎 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) |
| 74 | 10 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → 𝑆 ∈ V ) |
| 75 | rabexg | ⊢ ( 𝑆 ∈ V → { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ V ) | |
| 76 | 74 75 | syl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ V ) |
| 77 | sseq1 | ⊢ ( 𝑧 = 𝑎 → ( 𝑧 ⊆ 𝑦 ↔ 𝑎 ⊆ 𝑦 ) ) | |
| 78 | 77 | rabbidv | ⊢ ( 𝑧 = 𝑎 → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) |
| 79 | 78 | cbvmptv | ⊢ ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑎 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) |
| 80 | 2 79 | eqtri | ⊢ 𝐹 = ( 𝑎 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) |
| 81 | 80 | elrnmpt | ⊢ ( { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ V → ( { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) ) |
| 82 | 76 81 | syl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑎 ⊆ 𝑦 } ) ) |
| 83 | 73 82 | mpbird | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ ran 𝐹 ) |
| 84 | pwidg | ⊢ ( { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ V → { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) | |
| 85 | 76 84 | syl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) |
| 86 | inelcm | ⊢ ( ( { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ ran 𝐹 ∧ { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ∈ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) → ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) | |
| 87 | 83 85 86 | syl2anc | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) |
| 88 | 87 | ralrimivva | ⊢ ( 𝐴 ∈ V → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) |
| 89 | rabexg | ⊢ ( 𝑆 ∈ V → { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∈ V ) | |
| 90 | 10 89 | syl | ⊢ ( 𝐴 ∈ V → { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∈ V ) |
| 91 | 90 | ralrimivw | ⊢ ( 𝐴 ∈ V → ∀ 𝑢 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∈ V ) |
| 92 | sseq1 | ⊢ ( 𝑧 = 𝑢 → ( 𝑧 ⊆ 𝑦 ↔ 𝑢 ⊆ 𝑦 ) ) | |
| 93 | 92 | rabbidv | ⊢ ( 𝑧 = 𝑢 → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ) |
| 94 | 93 | cbvmptv | ⊢ ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑢 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ) |
| 95 | 2 94 | eqtri | ⊢ 𝐹 = ( 𝑢 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ) |
| 96 | ineq1 | ⊢ ( 𝑎 = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } → ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) = ( { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) | |
| 97 | inrab | ⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ⊆ 𝑦 ∧ 𝑣 ⊆ 𝑦 ) } | |
| 98 | unss | ⊢ ( ( 𝑢 ⊆ 𝑦 ∧ 𝑣 ⊆ 𝑦 ) ↔ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 ) | |
| 99 | 98 | rabbii | ⊢ { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ⊆ 𝑦 ∧ 𝑣 ⊆ 𝑦 ) } = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } |
| 100 | 97 99 | eqtri | ⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } |
| 101 | 96 100 | eqtrdi | ⊢ ( 𝑎 = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } → ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) = { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) |
| 102 | 101 | pweqd | ⊢ ( 𝑎 = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } → 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) = 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) |
| 103 | 102 | ineq2d | ⊢ ( 𝑎 = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } → ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) = ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ) |
| 104 | 103 | neeq1d | ⊢ ( 𝑎 = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } → ( ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ↔ ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) ) |
| 105 | 104 | ralbidv | ⊢ ( 𝑎 = { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } → ( ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ↔ ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) ) |
| 106 | 95 105 | ralrnmptw | ⊢ ( ∀ 𝑢 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑢 ⊆ 𝑦 } ∈ V → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ↔ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) ) |
| 107 | 91 106 | syl | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ↔ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 { 𝑦 ∈ 𝑆 ∣ ( 𝑢 ∪ 𝑣 ) ⊆ 𝑦 } ) ≠ ∅ ) ) |
| 108 | 88 107 | mpbird | ⊢ ( 𝐴 ∈ V → ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ) |
| 109 | rabexg | ⊢ ( 𝑆 ∈ V → { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ∈ V ) | |
| 110 | 10 109 | syl | ⊢ ( 𝐴 ∈ V → { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ∈ V ) |
| 111 | 110 | ralrimivw | ⊢ ( 𝐴 ∈ V → ∀ 𝑣 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ∈ V ) |
| 112 | sseq1 | ⊢ ( 𝑧 = 𝑣 → ( 𝑧 ⊆ 𝑦 ↔ 𝑣 ⊆ 𝑦 ) ) | |
| 113 | 112 | rabbidv | ⊢ ( 𝑧 = 𝑣 → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) |
| 114 | 113 | cbvmptv | ⊢ ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑣 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) |
| 115 | 2 114 | eqtri | ⊢ 𝐹 = ( 𝑣 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) |
| 116 | ineq2 | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } → ( 𝑎 ∩ 𝑏 ) = ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) | |
| 117 | 116 | pweqd | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } → 𝒫 ( 𝑎 ∩ 𝑏 ) = 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) |
| 118 | 117 | ineq2d | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } → ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) = ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ) |
| 119 | 118 | neeq1d | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } → ( ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ↔ ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ) ) |
| 120 | 115 119 | ralrnmptw | ⊢ ( ∀ 𝑣 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ∈ V → ( ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ↔ ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ) ) |
| 121 | 111 120 | syl | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ↔ ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ) ) |
| 122 | 121 | ralbidv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑣 ∈ 𝑆 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ { 𝑦 ∈ 𝑆 ∣ 𝑣 ⊆ 𝑦 } ) ) ≠ ∅ ) ) |
| 123 | 108 122 | mpbird | ⊢ ( 𝐴 ∈ V → ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ) |
| 124 | 33 49 123 | 3jca | ⊢ ( 𝐴 ∈ V → ( ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ) ) |
| 125 | isfbas | ⊢ ( 𝑆 ∈ V → ( ran 𝐹 ∈ ( fBas ‘ 𝑆 ) ↔ ( ran 𝐹 ⊆ 𝒫 𝑆 ∧ ( ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ) ) ) ) | |
| 126 | 10 125 | syl | ⊢ ( 𝐴 ∈ V → ( ran 𝐹 ∈ ( fBas ‘ 𝑆 ) ↔ ( ran 𝐹 ⊆ 𝒫 𝑆 ∧ ( ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ran 𝐹 ∩ 𝒫 ( 𝑎 ∩ 𝑏 ) ) ≠ ∅ ) ) ) ) |
| 127 | 16 124 126 | mpbir2and | ⊢ ( 𝐴 ∈ V → ran 𝐹 ∈ ( fBas ‘ 𝑆 ) ) |
| 128 | 3 127 | eqeltrid | ⊢ ( 𝐴 ∈ V → 𝐿 ∈ ( fBas ‘ 𝑆 ) ) |
| 129 | 4 5 128 | 3syl | ⊢ ( 𝜑 → 𝐿 ∈ ( fBas ‘ 𝑆 ) ) |