This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsinv.p | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| tsmsinv.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsinv.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | ||
| tsmsinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsinv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsinv.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| Assertion | tsmsinv | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝐺 tsums ( 𝐼 ∘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsinv.p | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | tsmsinv.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmsinv.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | |
| 5 | tsmsinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmsinv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmsinv.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 8 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 9 | tgptps | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 11 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 13 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
| 14 | 12 3 13 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 15 | 1 2 | invghm | ⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 17 | ghmmhm | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 19 | 8 2 | tgpinv | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 21 | 1 8 8 3 10 3 10 18 20 5 6 7 | tsmsmhm | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝐺 tsums ( 𝐼 ∘ 𝐹 ) ) ) |