This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskuni | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsksdom | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) | |
| 2 | cardidg | ⊢ ( 𝑇 ∈ Tarski → ( card ‘ 𝑇 ) ≈ 𝑇 ) | |
| 3 | 2 | ensymd | ⊢ ( 𝑇 ∈ Tarski → 𝑇 ≈ ( card ‘ 𝑇 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ≈ ( card ‘ 𝑇 ) ) |
| 5 | sdomentr | ⊢ ( ( 𝐴 ≺ 𝑇 ∧ 𝑇 ≈ ( card ‘ 𝑇 ) ) → 𝐴 ≺ ( card ‘ 𝑇 ) ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ ( card ‘ 𝑇 ) ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) | |
| 8 | 7 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } |
| 9 | cardon | ⊢ ( card ‘ 𝑇 ) ∈ On | |
| 10 | sdomdom | ⊢ ( 𝐴 ≺ ( card ‘ 𝑇 ) → 𝐴 ≼ ( card ‘ 𝑇 ) ) | |
| 11 | ondomen | ⊢ ( ( ( card ‘ 𝑇 ) ∈ On ∧ 𝐴 ≼ ( card ‘ 𝑇 ) ) → 𝐴 ∈ dom card ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝐴 ≺ ( card ‘ 𝑇 ) → 𝐴 ∈ dom card ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → 𝐴 ∈ dom card ) |
| 14 | vex | ⊢ 𝑓 ∈ V | |
| 15 | 14 | imaex | ⊢ ( 𝑓 “ 𝑥 ) ∈ V |
| 16 | 15 7 | fnmpti | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) Fn 𝐴 |
| 17 | dffn4 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐴 –onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) ) | |
| 18 | 16 17 | mpbi | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐴 –onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) |
| 19 | fodomnum | ⊢ ( 𝐴 ∈ dom card → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐴 –onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) → ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) ≼ 𝐴 ) ) | |
| 20 | 13 18 19 | mpisyl | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) ≼ 𝐴 ) |
| 21 | 8 20 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≼ 𝐴 ) |
| 22 | domsdomtr | ⊢ ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≼ 𝐴 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) | |
| 23 | 21 22 | sylancom | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
| 24 | 23 | adantll | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
| 25 | 6 24 | mpdan | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
| 26 | ne0i | ⊢ ( 𝐴 ∈ 𝑇 → 𝑇 ≠ ∅ ) | |
| 27 | tskcard | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( card ‘ 𝑇 ) ∈ Inacc ) | |
| 28 | 26 27 | sylan2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
| 29 | elina | ⊢ ( ( card ‘ 𝑇 ) ∈ Inacc ↔ ( ( card ‘ 𝑇 ) ≠ ∅ ∧ ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( card ‘ 𝑇 ) 𝒫 𝑥 ≺ ( card ‘ 𝑇 ) ) ) | |
| 30 | 29 | simp2bi | ⊢ ( ( card ‘ 𝑇 ) ∈ Inacc → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
| 31 | 28 30 | syl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
| 32 | 25 31 | breqtrrd | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
| 33 | 32 | 3adant2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
| 35 | 28 | 3adant2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
| 37 | inawina | ⊢ ( ( card ‘ 𝑇 ) ∈ Inacc → ( card ‘ 𝑇 ) ∈ Inaccw ) | |
| 38 | winalim | ⊢ ( ( card ‘ 𝑇 ) ∈ Inaccw → Lim ( card ‘ 𝑇 ) ) | |
| 39 | 36 37 38 | 3syl | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → Lim ( card ‘ 𝑇 ) ) |
| 40 | vex | ⊢ 𝑦 ∈ V | |
| 41 | eqeq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = ( 𝑓 “ 𝑥 ) ↔ 𝑦 = ( 𝑓 “ 𝑥 ) ) ) | |
| 42 | 41 | rexbidv | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑓 “ 𝑥 ) ) ) |
| 43 | 40 42 | elab | ⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑓 “ 𝑥 ) ) |
| 44 | imassrn | ⊢ ( 𝑓 “ 𝑥 ) ⊆ ran 𝑓 | |
| 45 | f1ofo | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) ) | |
| 46 | forn | ⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → ran 𝑓 = ( card ‘ 𝑇 ) ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ran 𝑓 = ( card ‘ 𝑇 ) ) |
| 48 | 44 47 | sseqtrid | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
| 49 | 48 | ad2antlr | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
| 50 | f1of1 | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → 𝑓 : ∪ 𝐴 –1-1→ ( card ‘ 𝑇 ) ) | |
| 51 | elssuni | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) | |
| 52 | vex | ⊢ 𝑥 ∈ V | |
| 53 | 52 | f1imaen | ⊢ ( ( 𝑓 : ∪ 𝐴 –1-1→ ( card ‘ 𝑇 ) ∧ 𝑥 ⊆ ∪ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 54 | 50 51 53 | syl2an | ⊢ ( ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 55 | 54 | adantll | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 56 | simpl1 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑇 ∈ Tarski ) | |
| 57 | trss | ⊢ ( Tr 𝑇 → ( 𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇 ) ) | |
| 58 | 57 | imp | ⊢ ( ( Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ⊆ 𝑇 ) |
| 59 | 58 | 3adant1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ⊆ 𝑇 ) |
| 60 | 59 | sselda | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑇 ) |
| 61 | tsksdom | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ≺ 𝑇 ) | |
| 62 | 56 60 61 | syl2anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ 𝑇 ) |
| 63 | 56 3 | syl | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑇 ≈ ( card ‘ 𝑇 ) ) |
| 64 | sdomentr | ⊢ ( ( 𝑥 ≺ 𝑇 ∧ 𝑇 ≈ ( card ‘ 𝑇 ) ) → 𝑥 ≺ ( card ‘ 𝑇 ) ) | |
| 65 | 62 63 64 | syl2anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ ( card ‘ 𝑇 ) ) |
| 66 | 65 | adantlr | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ ( card ‘ 𝑇 ) ) |
| 67 | ensdomtr | ⊢ ( ( ( 𝑓 “ 𝑥 ) ≈ 𝑥 ∧ 𝑥 ≺ ( card ‘ 𝑇 ) ) → ( 𝑓 “ 𝑥 ) ≺ ( card ‘ 𝑇 ) ) | |
| 68 | 55 66 67 | syl2anc | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≺ ( card ‘ 𝑇 ) ) |
| 69 | 36 30 | syl | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
| 70 | 69 | adantr | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
| 71 | 68 70 | breqtrrd | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
| 72 | sseq1 | ⊢ ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ↔ ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) ) | |
| 73 | breq1 | ⊢ ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ↔ ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) | |
| 74 | 72 73 | anbi12d | ⊢ ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ↔ ( ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ∧ ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
| 75 | 74 | biimprcd | ⊢ ( ( ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ∧ ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) → ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
| 76 | 49 71 75 | syl2anc | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
| 77 | 76 | rexlimdva | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
| 78 | 43 77 | biimtrid | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
| 79 | 78 | ralrimiv | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) |
| 80 | fvex | ⊢ ( card ‘ 𝑇 ) ∈ V | |
| 81 | 80 | cfslb2n | ⊢ ( ( Lim ( card ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) → ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) ) ) |
| 82 | 39 79 81 | syl2anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) ) ) |
| 83 | 34 82 | mpd | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) ) |
| 84 | 15 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } |
| 85 | 48 | ralrimivw | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
| 86 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) | |
| 87 | 85 86 | sylibr | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
| 88 | fof | ⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ) | |
| 89 | foelrn | ⊢ ( ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) ∧ 𝑦 ∈ ( card ‘ 𝑇 ) ) → ∃ 𝑧 ∈ ∪ 𝐴 𝑦 = ( 𝑓 ‘ 𝑧 ) ) | |
| 90 | 89 | ex | ⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → ( 𝑦 ∈ ( card ‘ 𝑇 ) → ∃ 𝑧 ∈ ∪ 𝐴 𝑦 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 91 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 ) | |
| 92 | nfv | ⊢ Ⅎ 𝑥 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) | |
| 93 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) | |
| 94 | 93 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) |
| 95 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑓 “ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) | |
| 96 | 95 | 3ad2ant2 | ⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 “ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
| 97 | ffn | ⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → 𝑓 Fn ∪ 𝐴 ) | |
| 98 | 97 | 3ad2ant1 | ⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑓 Fn ∪ 𝐴 ) |
| 99 | 51 | 3ad2ant2 | ⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ ∪ 𝐴 ) |
| 100 | simp3 | ⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) | |
| 101 | fnfvima | ⊢ ( ( 𝑓 Fn ∪ 𝐴 ∧ 𝑥 ⊆ ∪ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑓 “ 𝑥 ) ) | |
| 102 | 98 99 100 101 | syl3anc | ⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑓 “ 𝑥 ) ) |
| 103 | 96 102 | sseldd | ⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
| 104 | 103 | 3exp | ⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) ) |
| 105 | 92 94 104 | rexlimd | ⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
| 106 | 91 105 | biimtrid | ⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( 𝑧 ∈ ∪ 𝐴 → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
| 107 | eleq1a | ⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) → ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) | |
| 108 | 106 107 | syl6 | ⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( 𝑧 ∈ ∪ 𝐴 → ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) ) |
| 109 | 108 | rexlimdv | ⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( ∃ 𝑧 ∈ ∪ 𝐴 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
| 110 | 88 90 109 | sylsyld | ⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → ( 𝑦 ∈ ( card ‘ 𝑇 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
| 111 | 45 110 | syl | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ( 𝑦 ∈ ( card ‘ 𝑇 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
| 112 | 111 | ssrdv | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ( card ‘ 𝑇 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
| 113 | 87 112 | eqssd | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) = ( card ‘ 𝑇 ) ) |
| 114 | 84 113 | eqtr3id | ⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } = ( card ‘ 𝑇 ) ) |
| 115 | 114 | necon3ai | ⊢ ( ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) → ¬ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
| 116 | 83 115 | syl | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ¬ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
| 117 | 116 | pm2.01da | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ¬ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
| 118 | 117 | nexdv | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ¬ ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
| 119 | entr | ⊢ ( ( ∪ 𝐴 ≈ 𝑇 ∧ 𝑇 ≈ ( card ‘ 𝑇 ) ) → ∪ 𝐴 ≈ ( card ‘ 𝑇 ) ) | |
| 120 | 3 119 | sylan2 | ⊢ ( ( ∪ 𝐴 ≈ 𝑇 ∧ 𝑇 ∈ Tarski ) → ∪ 𝐴 ≈ ( card ‘ 𝑇 ) ) |
| 121 | bren | ⊢ ( ∪ 𝐴 ≈ ( card ‘ 𝑇 ) ↔ ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) | |
| 122 | 120 121 | sylib | ⊢ ( ( ∪ 𝐴 ≈ 𝑇 ∧ 𝑇 ∈ Tarski ) → ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
| 123 | 122 | expcom | ⊢ ( 𝑇 ∈ Tarski → ( ∪ 𝐴 ≈ 𝑇 → ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ) |
| 124 | 123 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( ∪ 𝐴 ≈ 𝑇 → ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ) |
| 125 | 118 124 | mtod | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ¬ ∪ 𝐴 ≈ 𝑇 ) |
| 126 | uniss | ⊢ ( 𝐴 ⊆ 𝑇 → ∪ 𝐴 ⊆ ∪ 𝑇 ) | |
| 127 | df-tr | ⊢ ( Tr 𝑇 ↔ ∪ 𝑇 ⊆ 𝑇 ) | |
| 128 | 127 | biimpi | ⊢ ( Tr 𝑇 → ∪ 𝑇 ⊆ 𝑇 ) |
| 129 | 126 128 | sylan9ss | ⊢ ( ( 𝐴 ⊆ 𝑇 ∧ Tr 𝑇 ) → ∪ 𝐴 ⊆ 𝑇 ) |
| 130 | 129 | expcom | ⊢ ( Tr 𝑇 → ( 𝐴 ⊆ 𝑇 → ∪ 𝐴 ⊆ 𝑇 ) ) |
| 131 | 57 130 | syld | ⊢ ( Tr 𝑇 → ( 𝐴 ∈ 𝑇 → ∪ 𝐴 ⊆ 𝑇 ) ) |
| 132 | 131 | imp | ⊢ ( ( Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ⊆ 𝑇 ) |
| 133 | tsken | ⊢ ( ( 𝑇 ∈ Tarski ∧ ∪ 𝐴 ⊆ 𝑇 ) → ( ∪ 𝐴 ≈ 𝑇 ∨ ∪ 𝐴 ∈ 𝑇 ) ) | |
| 134 | 132 133 | sylan2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ ( Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ) → ( ∪ 𝐴 ≈ 𝑇 ∨ ∪ 𝐴 ∈ 𝑇 ) ) |
| 135 | 134 | 3impb | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( ∪ 𝐴 ≈ 𝑇 ∨ ∪ 𝐴 ∈ 𝑇 ) ) |
| 136 | 135 | ord | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( ¬ ∪ 𝐴 ≈ 𝑇 → ∪ 𝐴 ∈ 𝑇 ) ) |
| 137 | 125 136 | mpd | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) |