This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any small collection of small subsets of A cannot have union A , where "small" means smaller than the cofinality. This is a stronger version of cfslb . This is a common application of cofinality: under AC, ( aleph1 ) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfslb.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cfslb2n | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ∪ 𝐵 ≠ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfslb.1 | ⊢ 𝐴 ∈ V | |
| 2 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 3 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 4 | sstr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑥 ⊆ On ) | |
| 5 | 4 | expcom | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ On ) ) |
| 6 | 2 3 5 | 3syl | ⊢ ( Lim 𝐴 → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ On ) ) |
| 7 | onsucuni | ⊢ ( 𝑥 ⊆ On → 𝑥 ⊆ suc ∪ 𝑥 ) | |
| 8 | 6 7 | syl6 | ⊢ ( Lim 𝐴 → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ suc ∪ 𝑥 ) ) |
| 9 | 8 | adantrd | ⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝑥 ⊆ suc ∪ 𝑥 ) ) |
| 10 | 9 | ralimdv | ⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ suc ∪ 𝑥 ) ) |
| 11 | uniiun | ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
| 12 | ss2iun | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ suc ∪ 𝑥 → ∪ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) | |
| 13 | 11 12 | eqsstrid | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ suc ∪ 𝑥 → ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) |
| 14 | 10 13 | syl6 | ⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) ) |
| 15 | 14 | imp | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) |
| 16 | 1 | cfslbn | ⊢ ( ( Lim 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝑥 ∈ 𝐴 ) |
| 17 | 16 | 3expib | ⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝑥 ∈ 𝐴 ) ) |
| 18 | ordsucss | ⊢ ( Ord 𝐴 → ( ∪ 𝑥 ∈ 𝐴 → suc ∪ 𝑥 ⊆ 𝐴 ) ) | |
| 19 | 2 17 18 | sylsyld | ⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → suc ∪ 𝑥 ⊆ 𝐴 ) ) |
| 20 | 19 | ralimdv | ⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) ) |
| 21 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) | |
| 22 | 20 21 | imbitrrdi | ⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) ) |
| 23 | 22 | imp | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) |
| 24 | sseq1 | ⊢ ( ∪ 𝐵 = 𝐴 → ( ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) ) | |
| 25 | eqss | ⊢ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ↔ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) ) | |
| 26 | 25 | simplbi2com | ⊢ ( 𝐴 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) |
| 27 | 24 26 | biimtrdi | ⊢ ( ∪ 𝐵 = 𝐴 → ( ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) ) |
| 28 | 27 | com3l | ⊢ ( ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 → ( ∪ 𝐵 = 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) ) |
| 29 | 15 23 28 | sylc | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∪ 𝐵 = 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) |
| 30 | limsuc | ⊢ ( Lim 𝐴 → ( ∪ 𝑥 ∈ 𝐴 ↔ suc ∪ 𝑥 ∈ 𝐴 ) ) | |
| 31 | 17 30 | sylibd | ⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → suc ∪ 𝑥 ∈ 𝐴 ) ) |
| 32 | 31 | ralimdv | ⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ) ) |
| 33 | 32 | imp | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ) |
| 34 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 ) → ∃ 𝑥 ∈ 𝐵 ( suc ∪ 𝑥 ∈ 𝐴 ∧ 𝑦 = suc ∪ 𝑥 ) ) | |
| 35 | eleq1 | ⊢ ( 𝑦 = suc ∪ 𝑥 → ( 𝑦 ∈ 𝐴 ↔ suc ∪ 𝑥 ∈ 𝐴 ) ) | |
| 36 | 35 | biimparc | ⊢ ( ( suc ∪ 𝑥 ∈ 𝐴 ∧ 𝑦 = suc ∪ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 37 | 36 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( suc ∪ 𝑥 ∈ 𝐴 ∧ 𝑦 = suc ∪ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 38 | 34 37 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 39 | 38 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 → ( ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 40 | 33 39 | syl | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 41 | 40 | abssdv | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ) |
| 42 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 43 | 42 | sucex | ⊢ suc ∪ 𝑥 ∈ V |
| 44 | 43 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } |
| 45 | 44 | eqeq1i | ⊢ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ↔ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } = 𝐴 ) |
| 46 | 1 | cfslb | ⊢ ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ∧ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } = 𝐴 ) → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) |
| 47 | 46 | 3expia | ⊢ ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ) → ( ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) ) |
| 48 | 45 47 | biimtrid | ⊢ ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) ) |
| 49 | 41 48 | syldan | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) ) |
| 50 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) = ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) | |
| 51 | 50 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } |
| 52 | 43 50 | fnmpti | ⊢ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) Fn 𝐵 |
| 53 | dffn4 | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) Fn 𝐵 ↔ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ) | |
| 54 | 52 53 | mpbi | ⊢ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) |
| 55 | relsdom | ⊢ Rel ≺ | |
| 56 | 55 | brrelex1i | ⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → 𝐵 ∈ V ) |
| 57 | breq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ≺ ( cf ‘ 𝐴 ) ↔ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) | |
| 58 | foeq2 | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ) ) | |
| 59 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ↔ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) ) |
| 61 | 57 60 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ) ↔ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) ) ) |
| 62 | cfon | ⊢ ( cf ‘ 𝐴 ) ∈ On | |
| 63 | sdomdom | ⊢ ( 𝑦 ≺ ( cf ‘ 𝐴 ) → 𝑦 ≼ ( cf ‘ 𝐴 ) ) | |
| 64 | ondomen | ⊢ ( ( ( cf ‘ 𝐴 ) ∈ On ∧ 𝑦 ≼ ( cf ‘ 𝐴 ) ) → 𝑦 ∈ dom card ) | |
| 65 | 62 63 64 | sylancr | ⊢ ( 𝑦 ≺ ( cf ‘ 𝐴 ) → 𝑦 ∈ dom card ) |
| 66 | fodomnum | ⊢ ( 𝑦 ∈ dom card → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ) | |
| 67 | 65 66 | syl | ⊢ ( 𝑦 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ) |
| 68 | 61 67 | vtoclg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) ) |
| 69 | 56 68 | mpcom | ⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) |
| 70 | 54 69 | mpi | ⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) |
| 71 | 51 70 | eqbrtrrid | ⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ≼ 𝐵 ) |
| 72 | domtr | ⊢ ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ≼ 𝐵 ) → ( cf ‘ 𝐴 ) ≼ 𝐵 ) | |
| 73 | 71 72 | sylan2 | ⊢ ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ( cf ‘ 𝐴 ) ≼ 𝐵 ) |
| 74 | domnsym | ⊢ ( ( cf ‘ 𝐴 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
| 76 | 75 | pm2.01da | ⊢ ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
| 77 | 76 | a1i | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
| 78 | 29 49 77 | 3syld | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
| 79 | 78 | necon2ad | ⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ∪ 𝐵 ≠ 𝐴 ) ) |