This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskuni | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> U. A e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsksdom | |- ( ( T e. Tarski /\ A e. T ) -> A ~< T ) |
|
| 2 | cardidg | |- ( T e. Tarski -> ( card ` T ) ~~ T ) |
|
| 3 | 2 | ensymd | |- ( T e. Tarski -> T ~~ ( card ` T ) ) |
| 4 | 3 | adantr | |- ( ( T e. Tarski /\ A e. T ) -> T ~~ ( card ` T ) ) |
| 5 | sdomentr | |- ( ( A ~< T /\ T ~~ ( card ` T ) ) -> A ~< ( card ` T ) ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ( T e. Tarski /\ A e. T ) -> A ~< ( card ` T ) ) |
| 7 | eqid | |- ( x e. A |-> ( f " x ) ) = ( x e. A |-> ( f " x ) ) |
|
| 8 | 7 | rnmpt | |- ran ( x e. A |-> ( f " x ) ) = { z | E. x e. A z = ( f " x ) } |
| 9 | cardon | |- ( card ` T ) e. On |
|
| 10 | sdomdom | |- ( A ~< ( card ` T ) -> A ~<_ ( card ` T ) ) |
|
| 11 | ondomen | |- ( ( ( card ` T ) e. On /\ A ~<_ ( card ` T ) ) -> A e. dom card ) |
|
| 12 | 9 10 11 | sylancr | |- ( A ~< ( card ` T ) -> A e. dom card ) |
| 13 | 12 | adantl | |- ( ( A e. T /\ A ~< ( card ` T ) ) -> A e. dom card ) |
| 14 | vex | |- f e. _V |
|
| 15 | 14 | imaex | |- ( f " x ) e. _V |
| 16 | 15 7 | fnmpti | |- ( x e. A |-> ( f " x ) ) Fn A |
| 17 | dffn4 | |- ( ( x e. A |-> ( f " x ) ) Fn A <-> ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) ) |
|
| 18 | 16 17 | mpbi | |- ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) |
| 19 | fodomnum | |- ( A e. dom card -> ( ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) -> ran ( x e. A |-> ( f " x ) ) ~<_ A ) ) |
|
| 20 | 13 18 19 | mpisyl | |- ( ( A e. T /\ A ~< ( card ` T ) ) -> ran ( x e. A |-> ( f " x ) ) ~<_ A ) |
| 21 | 8 20 | eqbrtrrid | |- ( ( A e. T /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~<_ A ) |
| 22 | domsdomtr | |- ( ( { z | E. x e. A z = ( f " x ) } ~<_ A /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
|
| 23 | 21 22 | sylancom | |- ( ( A e. T /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 24 | 23 | adantll | |- ( ( ( T e. Tarski /\ A e. T ) /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 25 | 6 24 | mpdan | |- ( ( T e. Tarski /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) |
| 26 | ne0i | |- ( A e. T -> T =/= (/) ) |
|
| 27 | tskcard | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) e. Inacc ) |
|
| 28 | 26 27 | sylan2 | |- ( ( T e. Tarski /\ A e. T ) -> ( card ` T ) e. Inacc ) |
| 29 | elina | |- ( ( card ` T ) e. Inacc <-> ( ( card ` T ) =/= (/) /\ ( cf ` ( card ` T ) ) = ( card ` T ) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) ) |
|
| 30 | 29 | simp2bi | |- ( ( card ` T ) e. Inacc -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 31 | 28 30 | syl | |- ( ( T e. Tarski /\ A e. T ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 32 | 25 31 | breqtrrd | |- ( ( T e. Tarski /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) |
| 33 | 32 | 3adant2 | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) |
| 34 | 33 | adantr | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) |
| 35 | 28 | 3adant2 | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( card ` T ) e. Inacc ) |
| 36 | 35 | adantr | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( card ` T ) e. Inacc ) |
| 37 | inawina | |- ( ( card ` T ) e. Inacc -> ( card ` T ) e. InaccW ) |
|
| 38 | winalim | |- ( ( card ` T ) e. InaccW -> Lim ( card ` T ) ) |
|
| 39 | 36 37 38 | 3syl | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> Lim ( card ` T ) ) |
| 40 | vex | |- y e. _V |
|
| 41 | eqeq1 | |- ( z = y -> ( z = ( f " x ) <-> y = ( f " x ) ) ) |
|
| 42 | 41 | rexbidv | |- ( z = y -> ( E. x e. A z = ( f " x ) <-> E. x e. A y = ( f " x ) ) ) |
| 43 | 40 42 | elab | |- ( y e. { z | E. x e. A z = ( f " x ) } <-> E. x e. A y = ( f " x ) ) |
| 44 | imassrn | |- ( f " x ) C_ ran f |
|
| 45 | f1ofo | |- ( f : U. A -1-1-onto-> ( card ` T ) -> f : U. A -onto-> ( card ` T ) ) |
|
| 46 | forn | |- ( f : U. A -onto-> ( card ` T ) -> ran f = ( card ` T ) ) |
|
| 47 | 45 46 | syl | |- ( f : U. A -1-1-onto-> ( card ` T ) -> ran f = ( card ` T ) ) |
| 48 | 44 47 | sseqtrid | |- ( f : U. A -1-1-onto-> ( card ` T ) -> ( f " x ) C_ ( card ` T ) ) |
| 49 | 48 | ad2antlr | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) C_ ( card ` T ) ) |
| 50 | f1of1 | |- ( f : U. A -1-1-onto-> ( card ` T ) -> f : U. A -1-1-> ( card ` T ) ) |
|
| 51 | elssuni | |- ( x e. A -> x C_ U. A ) |
|
| 52 | vex | |- x e. _V |
|
| 53 | 52 | f1imaen | |- ( ( f : U. A -1-1-> ( card ` T ) /\ x C_ U. A ) -> ( f " x ) ~~ x ) |
| 54 | 50 51 53 | syl2an | |- ( ( f : U. A -1-1-onto-> ( card ` T ) /\ x e. A ) -> ( f " x ) ~~ x ) |
| 55 | 54 | adantll | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~~ x ) |
| 56 | simpl1 | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> T e. Tarski ) |
|
| 57 | trss | |- ( Tr T -> ( A e. T -> A C_ T ) ) |
|
| 58 | 57 | imp | |- ( ( Tr T /\ A e. T ) -> A C_ T ) |
| 59 | 58 | 3adant1 | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> A C_ T ) |
| 60 | 59 | sselda | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x e. T ) |
| 61 | tsksdom | |- ( ( T e. Tarski /\ x e. T ) -> x ~< T ) |
|
| 62 | 56 60 61 | syl2anc | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x ~< T ) |
| 63 | 56 3 | syl | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> T ~~ ( card ` T ) ) |
| 64 | sdomentr | |- ( ( x ~< T /\ T ~~ ( card ` T ) ) -> x ~< ( card ` T ) ) |
|
| 65 | 62 63 64 | syl2anc | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x ~< ( card ` T ) ) |
| 66 | 65 | adantlr | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> x ~< ( card ` T ) ) |
| 67 | ensdomtr | |- ( ( ( f " x ) ~~ x /\ x ~< ( card ` T ) ) -> ( f " x ) ~< ( card ` T ) ) |
|
| 68 | 55 66 67 | syl2anc | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~< ( card ` T ) ) |
| 69 | 36 30 | syl | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 70 | 69 | adantr | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 71 | 68 70 | breqtrrd | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~< ( cf ` ( card ` T ) ) ) |
| 72 | sseq1 | |- ( y = ( f " x ) -> ( y C_ ( card ` T ) <-> ( f " x ) C_ ( card ` T ) ) ) |
|
| 73 | breq1 | |- ( y = ( f " x ) -> ( y ~< ( cf ` ( card ` T ) ) <-> ( f " x ) ~< ( cf ` ( card ` T ) ) ) ) |
|
| 74 | 72 73 | anbi12d | |- ( y = ( f " x ) -> ( ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) <-> ( ( f " x ) C_ ( card ` T ) /\ ( f " x ) ~< ( cf ` ( card ` T ) ) ) ) ) |
| 75 | 74 | biimprcd | |- ( ( ( f " x ) C_ ( card ` T ) /\ ( f " x ) ~< ( cf ` ( card ` T ) ) ) -> ( y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 76 | 49 71 75 | syl2anc | |- ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 77 | 76 | rexlimdva | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( E. x e. A y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 78 | 43 77 | biimtrid | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( y e. { z | E. x e. A z = ( f " x ) } -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) |
| 79 | 78 | ralrimiv | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> A. y e. { z | E. x e. A z = ( f " x ) } ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) |
| 80 | fvex | |- ( card ` T ) e. _V |
|
| 81 | 80 | cfslb2n | |- ( ( Lim ( card ` T ) /\ A. y e. { z | E. x e. A z = ( f " x ) } ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) -> ( { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) ) |
| 82 | 39 79 81 | syl2anc | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) ) |
| 83 | 34 82 | mpd | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) |
| 84 | 15 | dfiun2 | |- U_ x e. A ( f " x ) = U. { z | E. x e. A z = ( f " x ) } |
| 85 | 48 | ralrimivw | |- ( f : U. A -1-1-onto-> ( card ` T ) -> A. x e. A ( f " x ) C_ ( card ` T ) ) |
| 86 | iunss | |- ( U_ x e. A ( f " x ) C_ ( card ` T ) <-> A. x e. A ( f " x ) C_ ( card ` T ) ) |
|
| 87 | 85 86 | sylibr | |- ( f : U. A -1-1-onto-> ( card ` T ) -> U_ x e. A ( f " x ) C_ ( card ` T ) ) |
| 88 | fof | |- ( f : U. A -onto-> ( card ` T ) -> f : U. A --> ( card ` T ) ) |
|
| 89 | foelrn | |- ( ( f : U. A -onto-> ( card ` T ) /\ y e. ( card ` T ) ) -> E. z e. U. A y = ( f ` z ) ) |
|
| 90 | 89 | ex | |- ( f : U. A -onto-> ( card ` T ) -> ( y e. ( card ` T ) -> E. z e. U. A y = ( f ` z ) ) ) |
| 91 | eluni2 | |- ( z e. U. A <-> E. x e. A z e. x ) |
|
| 92 | nfv | |- F/ x f : U. A --> ( card ` T ) |
|
| 93 | nfiu1 | |- F/_ x U_ x e. A ( f " x ) |
|
| 94 | 93 | nfel2 | |- F/ x ( f ` z ) e. U_ x e. A ( f " x ) |
| 95 | ssiun2 | |- ( x e. A -> ( f " x ) C_ U_ x e. A ( f " x ) ) |
|
| 96 | 95 | 3ad2ant2 | |- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f " x ) C_ U_ x e. A ( f " x ) ) |
| 97 | ffn | |- ( f : U. A --> ( card ` T ) -> f Fn U. A ) |
|
| 98 | 97 | 3ad2ant1 | |- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> f Fn U. A ) |
| 99 | 51 | 3ad2ant2 | |- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> x C_ U. A ) |
| 100 | simp3 | |- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> z e. x ) |
|
| 101 | fnfvima | |- ( ( f Fn U. A /\ x C_ U. A /\ z e. x ) -> ( f ` z ) e. ( f " x ) ) |
|
| 102 | 98 99 100 101 | syl3anc | |- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f ` z ) e. ( f " x ) ) |
| 103 | 96 102 | sseldd | |- ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f ` z ) e. U_ x e. A ( f " x ) ) |
| 104 | 103 | 3exp | |- ( f : U. A --> ( card ` T ) -> ( x e. A -> ( z e. x -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) ) |
| 105 | 92 94 104 | rexlimd | |- ( f : U. A --> ( card ` T ) -> ( E. x e. A z e. x -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) |
| 106 | 91 105 | biimtrid | |- ( f : U. A --> ( card ` T ) -> ( z e. U. A -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) |
| 107 | eleq1a | |- ( ( f ` z ) e. U_ x e. A ( f " x ) -> ( y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) |
|
| 108 | 106 107 | syl6 | |- ( f : U. A --> ( card ` T ) -> ( z e. U. A -> ( y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) ) |
| 109 | 108 | rexlimdv | |- ( f : U. A --> ( card ` T ) -> ( E. z e. U. A y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) |
| 110 | 88 90 109 | sylsyld | |- ( f : U. A -onto-> ( card ` T ) -> ( y e. ( card ` T ) -> y e. U_ x e. A ( f " x ) ) ) |
| 111 | 45 110 | syl | |- ( f : U. A -1-1-onto-> ( card ` T ) -> ( y e. ( card ` T ) -> y e. U_ x e. A ( f " x ) ) ) |
| 112 | 111 | ssrdv | |- ( f : U. A -1-1-onto-> ( card ` T ) -> ( card ` T ) C_ U_ x e. A ( f " x ) ) |
| 113 | 87 112 | eqssd | |- ( f : U. A -1-1-onto-> ( card ` T ) -> U_ x e. A ( f " x ) = ( card ` T ) ) |
| 114 | 84 113 | eqtr3id | |- ( f : U. A -1-1-onto-> ( card ` T ) -> U. { z | E. x e. A z = ( f " x ) } = ( card ` T ) ) |
| 115 | 114 | necon3ai | |- ( U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) |
| 116 | 83 115 | syl | |- ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) |
| 117 | 116 | pm2.01da | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) |
| 118 | 117 | nexdv | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. E. f f : U. A -1-1-onto-> ( card ` T ) ) |
| 119 | entr | |- ( ( U. A ~~ T /\ T ~~ ( card ` T ) ) -> U. A ~~ ( card ` T ) ) |
|
| 120 | 3 119 | sylan2 | |- ( ( U. A ~~ T /\ T e. Tarski ) -> U. A ~~ ( card ` T ) ) |
| 121 | bren | |- ( U. A ~~ ( card ` T ) <-> E. f f : U. A -1-1-onto-> ( card ` T ) ) |
|
| 122 | 120 121 | sylib | |- ( ( U. A ~~ T /\ T e. Tarski ) -> E. f f : U. A -1-1-onto-> ( card ` T ) ) |
| 123 | 122 | expcom | |- ( T e. Tarski -> ( U. A ~~ T -> E. f f : U. A -1-1-onto-> ( card ` T ) ) ) |
| 124 | 123 | 3ad2ant1 | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( U. A ~~ T -> E. f f : U. A -1-1-onto-> ( card ` T ) ) ) |
| 125 | 118 124 | mtod | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. U. A ~~ T ) |
| 126 | uniss | |- ( A C_ T -> U. A C_ U. T ) |
|
| 127 | df-tr | |- ( Tr T <-> U. T C_ T ) |
|
| 128 | 127 | biimpi | |- ( Tr T -> U. T C_ T ) |
| 129 | 126 128 | sylan9ss | |- ( ( A C_ T /\ Tr T ) -> U. A C_ T ) |
| 130 | 129 | expcom | |- ( Tr T -> ( A C_ T -> U. A C_ T ) ) |
| 131 | 57 130 | syld | |- ( Tr T -> ( A e. T -> U. A C_ T ) ) |
| 132 | 131 | imp | |- ( ( Tr T /\ A e. T ) -> U. A C_ T ) |
| 133 | tsken | |- ( ( T e. Tarski /\ U. A C_ T ) -> ( U. A ~~ T \/ U. A e. T ) ) |
|
| 134 | 132 133 | sylan2 | |- ( ( T e. Tarski /\ ( Tr T /\ A e. T ) ) -> ( U. A ~~ T \/ U. A e. T ) ) |
| 135 | 134 | 3impb | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( U. A ~~ T \/ U. A e. T ) ) |
| 136 | 135 | ord | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( -. U. A ~~ T -> U. A e. T ) ) |
| 137 | 125 136 | mpd | |- ( ( T e. Tarski /\ Tr T /\ A e. T ) -> U. A e. T ) |