This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskwun | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ WUni ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → Tr 𝑇 ) | |
| 2 | simp3 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → 𝑇 ≠ ∅ ) | |
| 3 | tskuni | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) | |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) |
| 5 | 4 | 3adantl3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) |
| 6 | tskpw | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) | |
| 7 | 6 | 3ad2antl1 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
| 8 | tskpr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 ) | |
| 9 | 8 | 3exp | ⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ∈ 𝑇 → ( 𝑦 ∈ 𝑇 → { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ 𝑇 → ( 𝑦 ∈ 𝑇 → { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) |
| 11 | 10 | imp31 | ⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 ) |
| 12 | 11 | ralrimiva | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) |
| 13 | 5 7 12 | 3jca | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) |
| 15 | iswun | ⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ WUni ↔ ( Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → ( 𝑇 ∈ WUni ↔ ( Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) ) |
| 17 | 1 2 14 16 | mpbir3and | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ WUni ) |