This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsken | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ) → ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg | ⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝑇 ∈ Tarski → ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) |
| 3 | 2 | simprd | ⊢ ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) |
| 4 | elpw2g | ⊢ ( 𝑇 ∈ Tarski → ( 𝐴 ∈ 𝒫 𝑇 ↔ 𝐴 ⊆ 𝑇 ) ) | |
| 5 | 4 | biimpar | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ) → 𝐴 ∈ 𝒫 𝑇 ) |
| 6 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑇 ↔ 𝐴 ≈ 𝑇 ) ) | |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇 ) ) | |
| 8 | 6 7 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ↔ ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) ) |
| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ∧ 𝐴 ∈ 𝒫 𝑇 ) → ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) |
| 10 | 3 5 9 | syl2an2r | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ) → ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) |