This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004) (Proof shortened by Andrew Salmon, 14-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan9ss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| sylan9ss.2 | ⊢ ( 𝜓 → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | sylan9ss | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | sylan9ss.2 | ⊢ ( 𝜓 → 𝐵 ⊆ 𝐶 ) | |
| 3 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ⊆ 𝐶 ) |