This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the group sum; analogue of cnmpt12f which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| cnmpt1plusg.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| cnmpt1plusg.g | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) | ||
| cnmpt1plusg.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt1plusg.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) | ||
| cnmpt1plusg.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) | ||
| Assertion | cnmpt1plusg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐵 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | cnmpt1plusg.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | cnmpt1plusg.g | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) | |
| 4 | cnmpt1plusg.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 5 | cnmpt1plusg.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 6 | cnmpt1plusg.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | 1 7 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 10 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) | |
| 11 | 4 9 5 10 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 13 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) | |
| 14 | 4 9 6 13 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) |
| 15 | 14 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 16 | eqid | ⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) | |
| 17 | 7 2 16 | plusfval | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 18 | 12 15 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐵 ) ) ) |
| 20 | 1 16 | tmdcn | ⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 22 | 4 5 6 21 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 23 | 19 22 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐵 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |