This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| cnmpt11.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt11.b | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) | ||
| cnmpt11.c | ⊢ ( 𝑦 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | cnmpt11 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | cnmpt11.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 4 | cnmpt11.b | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) | |
| 5 | cnmpt11.c | ⊢ ( 𝑦 = 𝐴 → 𝐵 = 𝐶 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 7 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) | |
| 8 | 1 3 2 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 9 | 8 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 11 | 10 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 12 | 6 9 11 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 14 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 15 | 5 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( 𝐵 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿 ) ) |
| 16 | cntop2 | ⊢ ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 18 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 20 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ) | |
| 21 | 3 19 4 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ) |
| 22 | 14 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ) |
| 23 | 21 22 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿 ) |
| 25 | 15 24 9 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ∪ 𝐿 ) |
| 26 | 14 5 9 25 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 27 | 13 26 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = 𝐶 ) |
| 28 | fvco3 | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) ) | |
| 29 | 8 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) ) |
| 30 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) | |
| 31 | 30 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐶 ∈ ∪ 𝐿 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 32 | 6 25 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 33 | 27 29 32 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 34 | 33 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 35 | nfv | ⊢ Ⅎ 𝑧 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) | |
| 36 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 37 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 38 | 36 37 | nfco | ⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 39 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 40 | 38 39 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) |
| 41 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) | |
| 42 | 41 39 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) |
| 43 | 40 42 | nfeq | ⊢ Ⅎ 𝑥 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) |
| 44 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) ) | |
| 45 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) | |
| 46 | 44 45 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ↔ ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) ) |
| 47 | 35 43 46 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) |
| 48 | 34 47 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) |
| 49 | fco | ⊢ ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) : 𝑌 ⟶ ∪ 𝐿 ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐿 ) | |
| 50 | 21 8 49 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐿 ) |
| 51 | 50 | ffnd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) Fn 𝑋 ) |
| 52 | 25 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) : 𝑋 ⟶ ∪ 𝐿 ) |
| 53 | 52 | ffnd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) Fn 𝑋 ) |
| 54 | eqfnfv | ⊢ ( ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) Fn 𝑋 ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) Fn 𝑋 ) → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) ) | |
| 55 | 51 53 54 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ‘ 𝑧 ) ) ) |
| 56 | 48 55 | mpbird | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 57 | cnco | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 58 | 2 4 57 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 59 | 56 58 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ∈ ( 𝐽 Cn 𝐿 ) ) |