This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of Enderton p. 202. (Contributed by NM, 8-Sep-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 4 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 5 | 2 3 4 | mp2b | ⊢ dom 𝑅1 ⊆ On |
| 6 | 5 | sseli | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On ) |
| 7 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 8 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ∅ ) |
| 10 | treq | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ∅ → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ∅ ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 = ∅ → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ∅ ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 13 | treq | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑥 = 𝑦 → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ( 𝑅1 ‘ 𝑦 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 16 | treq | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ( 𝑅1 ‘ suc 𝑦 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑥 = suc 𝑦 → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 19 | treq | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐴 ) → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑥 = 𝐴 → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ( 𝑅1 ‘ 𝐴 ) ) ) |
| 21 | tr0 | ⊢ Tr ∅ | |
| 22 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) ) | |
| 23 | 2 22 | ax-mp | ⊢ ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) |
| 24 | simpr | ⊢ ( ( 𝑦 ∈ On ∧ Tr ( 𝑅1 ‘ 𝑦 ) ) → Tr ( 𝑅1 ‘ 𝑦 ) ) | |
| 25 | pwtr | ⊢ ( Tr ( 𝑅1 ‘ 𝑦 ) ↔ Tr 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 26 | 24 25 | sylib | ⊢ ( ( 𝑦 ∈ On ∧ Tr ( 𝑅1 ‘ 𝑦 ) ) → Tr 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 27 | r1sucg | ⊢ ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 28 | treq | ⊢ ( ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) → ( Tr ( 𝑅1 ‘ suc 𝑦 ) ↔ Tr 𝒫 ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑦 ∈ dom 𝑅1 → ( Tr ( 𝑅1 ‘ suc 𝑦 ) ↔ Tr 𝒫 ( 𝑅1 ‘ 𝑦 ) ) ) |
| 30 | 26 29 | syl5ibrcom | ⊢ ( ( 𝑦 ∈ On ∧ Tr ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑦 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 31 | 23 30 | biimtrrid | ⊢ ( ( 𝑦 ∈ On ∧ Tr ( 𝑅1 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 32 | ndmfv | ⊢ ( ¬ suc 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑦 ) = ∅ ) | |
| 33 | treq | ⊢ ( ( 𝑅1 ‘ suc 𝑦 ) = ∅ → ( Tr ( 𝑅1 ‘ suc 𝑦 ) ↔ Tr ∅ ) ) | |
| 34 | 32 33 | syl | ⊢ ( ¬ suc 𝑦 ∈ dom 𝑅1 → ( Tr ( 𝑅1 ‘ suc 𝑦 ) ↔ Tr ∅ ) ) |
| 35 | 21 34 | mpbiri | ⊢ ( ¬ suc 𝑦 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ suc 𝑦 ) ) |
| 36 | 31 35 | pm2.61d1 | ⊢ ( ( 𝑦 ∈ On ∧ Tr ( 𝑅1 ‘ 𝑦 ) ) → Tr ( 𝑅1 ‘ suc 𝑦 ) ) |
| 37 | 36 | ex | ⊢ ( 𝑦 ∈ On → ( Tr ( 𝑅1 ‘ 𝑦 ) → Tr ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 38 | triun | ⊢ ( ∀ 𝑦 ∈ 𝑥 Tr ( 𝑅1 ‘ 𝑦 ) → Tr ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) | |
| 39 | r1limg | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) | |
| 40 | 39 | ancoms | ⊢ ( ( Lim 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 41 | treq | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 42 | 40 41 | syl | ⊢ ( ( Lim 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) ) |
| 43 | 38 42 | imbitrrid | ⊢ ( ( Lim 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → ( ∀ 𝑦 ∈ 𝑥 Tr ( 𝑅1 ‘ 𝑦 ) → Tr ( 𝑅1 ‘ 𝑥 ) ) ) |
| 44 | 43 | impancom | ⊢ ( ( Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑥 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ 𝑥 ) ) ) |
| 45 | ndmfv | ⊢ ( ¬ 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝑥 ) = ∅ ) | |
| 46 | 45 10 | syl | ⊢ ( ¬ 𝑥 ∈ dom 𝑅1 → ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ Tr ∅ ) ) |
| 47 | 21 46 | mpbiri | ⊢ ( ¬ 𝑥 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ 𝑥 ) ) |
| 48 | 44 47 | pm2.61d1 | ⊢ ( ( Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 Tr ( 𝑅1 ‘ 𝑦 ) ) → Tr ( 𝑅1 ‘ 𝑥 ) ) |
| 49 | 48 | ex | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 Tr ( 𝑅1 ‘ 𝑦 ) → Tr ( 𝑅1 ‘ 𝑥 ) ) ) |
| 50 | 11 14 17 20 21 37 49 | tfinds | ⊢ ( 𝐴 ∈ On → Tr ( 𝑅1 ‘ 𝐴 ) ) |
| 51 | 6 50 | syl | ⊢ ( 𝐴 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ 𝐴 ) ) |
| 52 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∅ ) | |
| 53 | treq | ⊢ ( ( 𝑅1 ‘ 𝐴 ) = ∅ → ( Tr ( 𝑅1 ‘ 𝐴 ) ↔ Tr ∅ ) ) | |
| 54 | 52 53 | syl | ⊢ ( ¬ 𝐴 ∈ dom 𝑅1 → ( Tr ( 𝑅1 ‘ 𝐴 ) ↔ Tr ∅ ) ) |
| 55 | 21 54 | mpbiri | ⊢ ( ¬ 𝐴 ∈ dom 𝑅1 → Tr ( 𝑅1 ‘ 𝐴 ) ) |
| 56 | 51 55 | pm2.61i | ⊢ Tr ( 𝑅1 ‘ 𝐴 ) |