This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankwflemb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) ) | |
| 2 | eleq2 | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ 𝑦 ) ) | |
| 3 | 2 | biimprcd | ⊢ ( 𝐴 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 4 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝑥 ) | |
| 5 | trss | ⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 7 | elpwg | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 8 | 6 7 | mpbird | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 9 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝑥 ∈ dom 𝑅1 ) | |
| 10 | r1sucg | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 12 | 8 11 | eleqtrrd | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 13 | 12 | a1i | ⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 14 | 3 13 | syl9 | ⊢ ( 𝐴 ∈ 𝑦 → ( 𝑥 ∈ On → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) ) |
| 15 | 14 | reximdvai | ⊢ ( 𝐴 ∈ 𝑦 → ( ∃ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 16 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 17 | 16 | simpli | ⊢ Fun 𝑅1 |
| 18 | fvelima | ⊢ ( ( Fun 𝑅1 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) → ∃ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) | |
| 19 | 17 18 | mpan | ⊢ ( 𝑦 ∈ ( 𝑅1 “ On ) → ∃ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
| 20 | 15 19 | impel | ⊢ ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 21 | 20 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 22 | 1 21 | sylbi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 23 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 ) | |
| 24 | fvelrn | ⊢ ( ( Fun 𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1 ) → ( 𝑅1 ‘ suc 𝑥 ) ∈ ran 𝑅1 ) | |
| 25 | 17 23 24 | sylancr | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) ∈ ran 𝑅1 ) |
| 26 | df-ima | ⊢ ( 𝑅1 “ On ) = ran ( 𝑅1 ↾ On ) | |
| 27 | funrel | ⊢ ( Fun 𝑅1 → Rel 𝑅1 ) | |
| 28 | 17 27 | ax-mp | ⊢ Rel 𝑅1 |
| 29 | 16 | simpri | ⊢ Lim dom 𝑅1 |
| 30 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 31 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 32 | 29 30 31 | mp2b | ⊢ dom 𝑅1 ⊆ On |
| 33 | relssres | ⊢ ( ( Rel 𝑅1 ∧ dom 𝑅1 ⊆ On ) → ( 𝑅1 ↾ On ) = 𝑅1 ) | |
| 34 | 28 32 33 | mp2an | ⊢ ( 𝑅1 ↾ On ) = 𝑅1 |
| 35 | 34 | rneqi | ⊢ ran ( 𝑅1 ↾ On ) = ran 𝑅1 |
| 36 | 26 35 | eqtri | ⊢ ( 𝑅1 “ On ) = ran 𝑅1 |
| 37 | 25 36 | eleqtrrdi | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) ∈ ( 𝑅1 “ On ) ) |
| 38 | elunii | ⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ∧ ( 𝑅1 ‘ suc 𝑥 ) ∈ ( 𝑅1 “ On ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 39 | 37 38 | mpdan | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 40 | 39 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 41 | 22 40 | impbii | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |