This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the R1 function is transitive. Lemma 2.10 of Kunen p. 97. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r1elss.1 | ⊢ 𝐴 ∈ V | |
| Assertion | r1elss | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elss.1 | ⊢ 𝐴 ∈ V | |
| 2 | r1elssi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 3 | 1 | tz9.12 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 4 | dfss3 | ⊢ ( 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 5 | r1fnon | ⊢ 𝑅1 Fn On | |
| 6 | fnfun | ⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) | |
| 7 | funiunfv | ⊢ ( Fun 𝑅1 → ∪ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ On ) ) | |
| 8 | 5 6 7 | mp2b | ⊢ ∪ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ On ) |
| 9 | 8 | eleq2i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) ↔ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) |
| 10 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 11 | 9 10 | bitr3i | ⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∪ ( 𝑅1 “ On ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 13 | 4 12 | bitri | ⊢ ( 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 14 | 8 | eleq2i | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 15 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 16 | 14 15 | bitr3i | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 17 | 3 13 16 | 3imtr4i | ⊢ ( 𝐴 ⊆ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 18 | 2 17 | impbii | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |