This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trel | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) | |
| 2 | eleq12 | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝑥 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 5 | 2 4 | anbi12d | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 6 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) ) |
| 9 | 8 | spc2gv | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) ) |
| 10 | 9 | pm2.43b | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
| 11 | 1 10 | sylbi | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |