This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankval3b | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 2 | simprl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) | |
| 3 | ontri1 | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝑥 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) |
| 5 | 4 | con2bid | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( 𝑥 ∈ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 6 | r1elssi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 8 | 7 | sselda | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) |
| 9 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
| 10 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 11 | 10 | simpri | ⊢ Lim dom 𝑅1 |
| 12 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 13 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) | |
| 14 | 11 12 13 | mp2b | ⊢ ( ( 𝑥 ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
| 15 | 9 14 | mpan2 | ⊢ ( 𝑥 ∈ ( rank ‘ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
| 17 | rankr1ag | ⊢ ( ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ dom 𝑅1 ) → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) | |
| 18 | 8 16 17 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 19 | 18 | ralbidva | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 20 | 19 | biimpar | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 21 | 20 | an32s | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 22 | dfss3 | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 24 | simpll | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 25 | 15 | adantl | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝑥 ∈ dom 𝑅1 ) |
| 26 | rankr1bg | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 28 | 23 27 | mpbid | ⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) |
| 29 | 28 | ex | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( 𝑥 ∈ ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 30 | 29 | adantrl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( 𝑥 ∈ ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 31 | 5 30 | sylbird | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( ¬ ( rank ‘ 𝐴 ) ⊆ 𝑥 → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 32 | 31 | pm2.18d | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) |
| 33 | 32 | ex | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 34 | 33 | alrimiv | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑥 ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 35 | ssintab | ⊢ ( ( rank ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) | |
| 36 | 34 35 | sylibr | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } ) |
| 37 | df-rab | ⊢ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } | |
| 38 | 37 | inteqi | ⊢ ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } |
| 39 | 36 38 | sseqtrrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 40 | rankelb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑦 ∈ 𝐴 → ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) ) | |
| 41 | 40 | ralrimiv | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) |
| 42 | eleq2 | ⊢ ( 𝑥 = ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) ) | |
| 43 | 42 | ralbidv | ⊢ ( 𝑥 = ( rank ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 44 | 43 | onintss | ⊢ ( ( rank ‘ 𝐴 ) ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ⊆ ( rank ‘ 𝐴 ) ) ) |
| 45 | 1 41 44 | mpsyl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ⊆ ( rank ‘ 𝐴 ) ) |
| 46 | 39 45 | eqssd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |