This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | tcel | ⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | ⊢ 𝐴 ∈ V | |
| 2 | tcvalg | ⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 3 | ssel | ⊢ ( 𝐴 ⊆ 𝑥 → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥 ) ) | |
| 4 | trss | ⊢ ( Tr 𝑥 → ( 𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) | |
| 5 | 4 | com12 | ⊢ ( 𝐵 ∈ 𝑥 → ( Tr 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
| 6 | 3 5 | syl6com | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ⊆ 𝑥 → ( Tr 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |
| 7 | 6 | impd | ⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → 𝐵 ⊆ 𝑥 ) ) |
| 8 | simpr | ⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → Tr 𝑥 ) | |
| 9 | 7 8 | jca2 | ⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
| 10 | 9 | ss2abdv | ⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 11 | intss | ⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 13 | tcvalg | ⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 14 | 1 13 | ax-mp | ⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 15 | 12 14 | sseqtrrdi | ⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( TC ‘ 𝐴 ) ) |
| 16 | 2 15 | eqsstrd | ⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |