This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf ; see tz9.1 .) (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcvalg | ⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( TC ‘ 𝑦 ) = ( TC ‘ 𝐴 ) ) | |
| 2 | sseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) | |
| 3 | 2 | anbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
| 4 | 3 | abbidv | ⊢ ( 𝑦 = 𝐴 → { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 5 | 4 | inteqd | ⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 6 | 1 5 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( TC ‘ 𝑦 ) = ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 7 | tz9.1c | ⊢ ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V |
| 9 | df-tc | ⊢ TC = ( 𝑦 ∈ V ↦ ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 10 | 9 | fvmpt2 | ⊢ ( ( 𝑦 ∈ V ∧ ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) → ( TC ‘ 𝑦 ) = ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 11 | 7 8 10 | mp2an | ⊢ ( TC ‘ 𝑦 ) = ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 12 | 6 11 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |