This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly P ^ N . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
| sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | ||
| sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | ||
| sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | ||
| sylow1lem3.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | ||
| sylow1lem4.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| sylow1lem4.h | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐵 ) = 𝐵 } | ||
| sylow1lem5.l | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) | ||
| Assertion | sylow1lem5 | ⊢ ( 𝜑 → ∃ ℎ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 4 | sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 6 | sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | |
| 7 | sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 8 | sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | |
| 9 | sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | |
| 10 | sylow1lem3.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 11 | sylow1lem4.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 12 | sylow1lem4.h | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐵 ) = 𝐵 } | |
| 13 | sylow1lem5.l | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) | |
| 14 | 1 2 3 4 5 6 7 8 9 | sylow1lem2 | ⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |
| 15 | 1 12 | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | 14 11 15 | syl2anc | ⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 | sylow1lem4 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 18 | 10 1 | gaorber | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) → ∼ Er 𝑆 ) |
| 19 | 14 18 | syl | ⊢ ( 𝜑 → ∼ Er 𝑆 ) |
| 20 | erdm | ⊢ ( ∼ Er 𝑆 → dom ∼ = 𝑆 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → dom ∼ = 𝑆 ) |
| 22 | 11 21 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ dom ∼ ) |
| 23 | ecdmn0 | ⊢ ( 𝐵 ∈ dom ∼ ↔ [ 𝐵 ] ∼ ≠ ∅ ) | |
| 24 | 22 23 | sylib | ⊢ ( 𝜑 → [ 𝐵 ] ∼ ≠ ∅ ) |
| 25 | pwfi | ⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) | |
| 26 | 3 25 | sylib | ⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
| 27 | 8 | ssrab3 | ⊢ 𝑆 ⊆ 𝒫 𝑋 |
| 28 | ssfi | ⊢ ( ( 𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋 ) → 𝑆 ∈ Fin ) | |
| 29 | 26 27 28 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 30 | 19 | ecss | ⊢ ( 𝜑 → [ 𝐵 ] ∼ ⊆ 𝑆 ) |
| 31 | 29 30 | ssfid | ⊢ ( 𝜑 → [ 𝐵 ] ∼ ∈ Fin ) |
| 32 | hashnncl | ⊢ ( [ 𝐵 ] ∼ ∈ Fin → ( ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℕ ↔ [ 𝐵 ] ∼ ≠ ∅ ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℕ ↔ [ 𝐵 ] ∼ ≠ ∅ ) ) |
| 34 | 24 33 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℕ ) |
| 35 | 4 34 | pccld | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ∈ ℕ0 ) |
| 36 | 35 | nn0red | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ∈ ℝ ) |
| 37 | 5 | nn0red | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 38 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 39 | 2 38 | syl | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 40 | hashnncl | ⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) | |
| 41 | 3 40 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 42 | 39 41 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 43 | 4 42 | pccld | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 44 | 43 | nn0red | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
| 45 | leaddsub | ⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) | |
| 46 | 36 37 44 45 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 47 | 13 46 | mpbird | ⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 48 | eqid | ⊢ ( 𝐺 ~QG 𝐻 ) = ( 𝐺 ~QG 𝐻 ) | |
| 49 | 1 12 48 10 | orbsta2 | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) |
| 50 | 14 11 3 49 | syl21anc | ⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) |
| 51 | 50 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) ) |
| 52 | 34 | nnzd | ⊢ ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℤ ) |
| 53 | 34 | nnne0d | ⊢ ( 𝜑 → ( ♯ ‘ [ 𝐵 ] ∼ ) ≠ 0 ) |
| 54 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 55 | 54 | subg0cl | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 56 | 16 55 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 57 | 56 | ne0d | ⊢ ( 𝜑 → 𝐻 ≠ ∅ ) |
| 58 | 12 | ssrab3 | ⊢ 𝐻 ⊆ 𝑋 |
| 59 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝐻 ⊆ 𝑋 ) → 𝐻 ∈ Fin ) | |
| 60 | 3 58 59 | sylancl | ⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 61 | hashnncl | ⊢ ( 𝐻 ∈ Fin → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) |
| 63 | 57 62 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ ) |
| 64 | 63 | nnzd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
| 65 | 63 | nnne0d | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≠ 0 ) |
| 66 | pcmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ♯ ‘ [ 𝐵 ] ∼ ) ∈ ℤ ∧ ( ♯ ‘ [ 𝐵 ] ∼ ) ≠ 0 ) ∧ ( ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) | |
| 67 | 4 52 53 64 65 66 | syl122anc | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ [ 𝐵 ] ∼ ) · ( ♯ ‘ 𝐻 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 68 | 51 67 | eqtrd | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 69 | 47 68 | breqtrd | ⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) |
| 70 | 4 63 | pccld | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ∈ ℕ0 ) |
| 71 | 70 | nn0red | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ∈ ℝ ) |
| 72 | 37 71 36 | leadd2d | ⊢ ( 𝜑 → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + 𝑁 ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝐵 ] ∼ ) ) + ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) ) ) |
| 73 | 69 72 | mpbird | ⊢ ( 𝜑 → 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ) |
| 74 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝐻 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) ) | |
| 75 | 4 64 5 74 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ≤ ( 𝑃 pCnt ( ♯ ‘ 𝐻 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) ) |
| 76 | 73 75 | mpbid | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) ) |
| 77 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 78 | 4 77 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 79 | 78 5 | nnexpcld | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 80 | 79 | nnzd | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) |
| 81 | dvdsle | ⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝐻 ) ∈ ℕ ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) | |
| 82 | 80 63 81 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝐻 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) |
| 83 | 76 82 | mpd | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) |
| 84 | hashcl | ⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) | |
| 85 | 60 84 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 86 | 85 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℝ ) |
| 87 | 79 | nnred | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
| 88 | 86 87 | letri3d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ∧ ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝐻 ) ) ) ) |
| 89 | 17 83 88 | mpbir2and | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 90 | fveqeq2 | ⊢ ( ℎ = 𝐻 → ( ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ) ) | |
| 91 | 90 | rspcev | ⊢ ( ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ 𝑁 ) ) → ∃ ℎ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ) |
| 92 | 16 89 91 | syl2anc | ⊢ ( 𝜑 → ∃ ℎ ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ ℎ ) = ( 𝑃 ↑ 𝑁 ) ) |