This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | ||
| Assertion | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | |
| 3 | 2 | ssrab3 | ⊢ 𝐻 ⊆ 𝑋 |
| 4 | 3 | a1i | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ⊆ 𝑋 ) |
| 5 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 6 | 5 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | 1 7 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 9 | 6 8 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 10 | 7 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) |
| 11 | oveq1 | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 13 | 12 2 | elrab2 | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐻 ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 14 | 9 10 13 | sylanbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 15 | 14 | ne0d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ≠ ∅ ) |
| 16 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 17 | 16 5 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 18 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) | |
| 19 | oveq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ⊕ 𝐴 ) = ( 𝑥 ⊕ 𝐴 ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
| 21 | 20 2 | elrab2 | ⊢ ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
| 22 | 18 21 | sylib | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
| 23 | 22 | simpld | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝑋 ) |
| 24 | 23 | adantrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑥 ∈ 𝑋 ) |
| 25 | simprr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑦 ∈ 𝐻 ) | |
| 26 | oveq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 ⊕ 𝐴 ) = ( 𝑦 ⊕ 𝐴 ) ) | |
| 27 | 26 | eqeq1d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
| 28 | 27 2 | elrab2 | ⊢ ( 𝑦 ∈ 𝐻 ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
| 29 | 25 28 | sylib | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
| 30 | 29 | simpld | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑦 ∈ 𝑋 ) |
| 31 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 32 | 1 31 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 33 | 17 24 30 32 | syl3anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 34 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝐴 ∈ 𝑌 ) | |
| 35 | 1 31 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) ) |
| 36 | 16 24 30 34 35 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) ) |
| 37 | 29 | simprd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) |
| 38 | 37 | oveq2d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) = ( 𝑥 ⊕ 𝐴 ) ) |
| 39 | 22 | simprd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) |
| 40 | 39 | adantrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) |
| 41 | 36 38 40 | 3eqtrd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) |
| 42 | oveq1 | ⊢ ( 𝑢 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) ) | |
| 43 | 42 | eqeq1d | ⊢ ( 𝑢 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 44 | 43 2 | elrab2 | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 45 | 33 41 44 | sylanbrc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
| 46 | 45 | anassrs | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
| 47 | 46 | ralrimiva | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
| 48 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 49 | 48 5 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |
| 50 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 51 | 1 50 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 52 | 49 23 51 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 53 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝐴 ∈ 𝑌 ) | |
| 54 | 1 50 | gacan | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( 𝑥 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 55 | 48 23 53 53 54 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑥 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 56 | 39 55 | mpbid | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) |
| 57 | oveq1 | ⊢ ( 𝑢 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) ) | |
| 58 | 57 | eqeq1d | ⊢ ( 𝑢 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 59 | 58 2 | elrab2 | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 60 | 52 56 59 | sylanbrc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 61 | 47 60 | jca | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 62 | 61 | ralrimiva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 63 | 1 31 50 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) ) |
| 64 | 6 63 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) ) |
| 65 | 4 15 62 64 | mpbir3and | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |