This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orbsta2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| orbsta2.h | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | ||
| orbsta2.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | ||
| orbsta2.o | ⊢ 𝑂 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | ||
| Assertion | orbsta2 | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐴 ] 𝑂 ) · ( ♯ ‘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbsta2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | orbsta2.h | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | |
| 3 | orbsta2.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| 4 | orbsta2.o | ⊢ 𝑂 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 5 | 1 2 | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) | |
| 8 | 1 3 6 7 | lagsubg2 | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝐻 ) ) ) |
| 9 | pwfi | ⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) | |
| 10 | 7 9 | sylib | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → 𝒫 𝑋 ∈ Fin ) |
| 11 | 1 3 | eqger | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 12 | 6 11 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ∼ Er 𝑋 ) |
| 13 | 12 | qsss | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ∼ ) ⊆ 𝒫 𝑋 ) |
| 14 | 10 13 | ssfid | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ∼ ) ∈ Fin ) |
| 15 | eqid | ⊢ ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | |
| 16 | 1 2 3 15 4 | orbsta | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ) |
| 17 | 16 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ) |
| 18 | 14 17 | hasheqf1od | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ∼ ) ) = ( ♯ ‘ [ 𝐴 ] 𝑂 ) ) |
| 19 | 18 | oveq1d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ( ♯ ‘ ( 𝑋 / ∼ ) ) · ( ♯ ‘ 𝐻 ) ) = ( ( ♯ ‘ [ 𝐴 ] 𝑂 ) · ( ♯ ‘ 𝐻 ) ) ) |
| 20 | 8 19 | eqtrd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝐴 ] 𝑂 ) · ( ♯ ‘ 𝐻 ) ) ) |