This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . The function .(+) is a group action on S . (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
| sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | ||
| sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | ||
| sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | ||
| Assertion | sylow1lem2 | ⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 4 | sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 6 | sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | |
| 7 | sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 8 | sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | |
| 9 | sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | |
| 10 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 11 | 10 | pwex | ⊢ 𝒫 𝑋 ∈ V |
| 12 | 8 11 | rabex2 | ⊢ 𝑆 ∈ V |
| 13 | 2 12 | jctir | ⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ) |
| 14 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑋 ) | |
| 15 | eqid | ⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) | |
| 16 | 1 7 15 | grplmulf1o | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 17 | 2 14 16 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 18 | f1of1 | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
| 20 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 21 | fveqeq2 | ⊢ ( 𝑠 = 𝑦 → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) ) | |
| 22 | 21 8 | elrab2 | ⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 23 | 20 22 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑦 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 24 | 23 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝒫 𝑋 ) |
| 25 | 24 | elpwid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ⊆ 𝑋 ) |
| 26 | f1ssres | ⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ∧ 𝑦 ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ) | |
| 27 | 19 25 26 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ) |
| 28 | resmpt | ⊢ ( 𝑦 ⊆ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | |
| 29 | f1eq1 | ⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ↔ ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 ) ) | |
| 30 | 25 28 29 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ↔ ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 ) ) |
| 31 | 27 30 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 ) |
| 32 | f1f | ⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 ⟶ 𝑋 ) | |
| 33 | frn | ⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 ⟶ 𝑋 → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) | |
| 34 | 31 32 33 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) |
| 35 | 10 | elpw2 | ⊢ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝒫 𝑋 ↔ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) |
| 36 | 34 35 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝒫 𝑋 ) |
| 37 | f1f1orn | ⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1-onto→ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | |
| 38 | vex | ⊢ 𝑦 ∈ V | |
| 39 | 38 | f1oen | ⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1-onto→ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) → 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 40 | 31 37 39 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 41 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑦 ⊆ 𝑋 ) → 𝑦 ∈ Fin ) | |
| 42 | 3 25 41 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ Fin ) |
| 43 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ Fin ) | |
| 44 | 3 34 43 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ Fin ) |
| 45 | hashen | ⊢ ( ( 𝑦 ∈ Fin ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ↔ 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ) | |
| 46 | 42 44 45 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ↔ 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ) |
| 47 | 40 46 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ) |
| 48 | 23 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 49 | 47 48 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) = ( 𝑃 ↑ 𝑁 ) ) |
| 50 | fveqeq2 | ⊢ ( 𝑠 = ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) = ( 𝑃 ↑ 𝑁 ) ) ) | |
| 51 | 50 8 | elrab2 | ⊢ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ↔ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝒫 𝑋 ∧ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 52 | 36 49 51 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ) |
| 53 | 52 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ) |
| 54 | 9 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ↔ ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ) |
| 55 | 53 54 | sylib | ⊢ ( 𝜑 → ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ) |
| 56 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 57 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 58 | 1 57 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 59 | 56 58 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 60 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) | |
| 61 | simpr | ⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) | |
| 62 | simpl | ⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) | |
| 63 | 62 | oveq1d | ⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) |
| 64 | 61 63 | mpteq12dv | ⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
| 65 | 64 | rneqd | ⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
| 66 | vex | ⊢ 𝑎 ∈ V | |
| 67 | 66 | mptex | ⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ∈ V |
| 68 | 67 | rnex | ⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ∈ V |
| 69 | 65 9 68 | ovmpoa | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
| 70 | 59 60 69 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
| 71 | 8 | ssrab3 | ⊢ 𝑆 ⊆ 𝒫 𝑋 |
| 72 | 71 60 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝒫 𝑋 ) |
| 73 | 72 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ⊆ 𝑋 ) |
| 74 | 73 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝑋 ) |
| 75 | 1 7 57 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
| 76 | 56 74 75 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
| 77 | 76 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ 𝑧 ) ) |
| 78 | mptresid | ⊢ ( I ↾ 𝑎 ) = ( 𝑧 ∈ 𝑎 ↦ 𝑧 ) | |
| 79 | 77 78 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = ( I ↾ 𝑎 ) ) |
| 80 | 79 | rneqd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = ran ( I ↾ 𝑎 ) ) |
| 81 | rnresi | ⊢ ran ( I ↾ 𝑎 ) = 𝑎 | |
| 82 | 80 81 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = 𝑎 ) |
| 83 | 70 82 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ) |
| 84 | ovex | ⊢ ( 𝑐 + 𝑧 ) ∈ V | |
| 85 | oveq2 | ⊢ ( 𝑤 = ( 𝑐 + 𝑧 ) → ( 𝑏 + 𝑤 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) | |
| 86 | 84 85 | abrexco | ⊢ { 𝑢 ∣ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } 𝑢 = ( 𝑏 + 𝑤 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) } |
| 87 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) | |
| 88 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑆 ) |
| 89 | simpr | ⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) | |
| 90 | simpl | ⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → 𝑥 = 𝑐 ) | |
| 91 | 90 | oveq1d | ⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( 𝑐 + 𝑧 ) ) |
| 92 | 89 91 | mpteq12dv | ⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
| 93 | 92 | rneqd | ⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
| 94 | 66 | mptex | ⊢ ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ∈ V |
| 95 | 94 | rnex | ⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ∈ V |
| 96 | 93 9 95 | ovmpoa | ⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑐 ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
| 97 | 87 88 96 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
| 98 | eqid | ⊢ ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) | |
| 99 | 98 | rnmpt | ⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } |
| 100 | 97 99 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } ) |
| 101 | 100 | rexeqdv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) ↔ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } 𝑢 = ( 𝑏 + 𝑤 ) ) ) |
| 102 | 101 | abbidv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) } = { 𝑢 ∣ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } 𝑢 = ( 𝑏 + 𝑤 ) } ) |
| 103 | 56 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝐺 ∈ Grp ) |
| 104 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 105 | 104 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑏 ∈ 𝑋 ) |
| 106 | 87 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑐 ∈ 𝑋 ) |
| 107 | 74 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝑋 ) |
| 108 | 1 7 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
| 109 | 103 105 106 107 108 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
| 110 | 109 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ↔ 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) ) |
| 111 | 110 | rexbidva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑎 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) ) |
| 112 | 111 | abbidv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) } ) |
| 113 | 86 102 112 | 3eqtr4a | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) } ) |
| 114 | eqid | ⊢ ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) | |
| 115 | 114 | rnmpt | ⊢ ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) = { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) } |
| 116 | eqid | ⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) | |
| 117 | 116 | rnmpt | ⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) } |
| 118 | 113 115 117 | 3eqtr4g | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
| 119 | 55 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ) |
| 120 | 119 87 88 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) ∈ 𝑆 ) |
| 121 | simpr | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) | |
| 122 | simpl | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → 𝑥 = 𝑏 ) | |
| 123 | 122 | oveq1d | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑥 + 𝑧 ) = ( 𝑏 + 𝑧 ) ) |
| 124 | 121 123 | mpteq12dv | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑧 ) ) ) |
| 125 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑏 + 𝑧 ) = ( 𝑏 + 𝑤 ) ) | |
| 126 | 125 | cbvmptv | ⊢ ( 𝑧 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑧 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) |
| 127 | 124 126 | eqtrdi | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
| 128 | 127 | rneqd | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
| 129 | ovex | ⊢ ( 𝑐 ⊕ 𝑎 ) ∈ V | |
| 130 | 129 | mptex | ⊢ ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ∈ V |
| 131 | 130 | rnex | ⊢ ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ∈ V |
| 132 | 128 9 131 | ovmpoa | ⊢ ( ( 𝑏 ∈ 𝑋 ∧ ( 𝑐 ⊕ 𝑎 ) ∈ 𝑆 ) → ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
| 133 | 104 120 132 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
| 134 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 135 | 1 7 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
| 136 | 134 104 87 135 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
| 137 | simpr | ⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) | |
| 138 | simpl | ⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → 𝑥 = ( 𝑏 + 𝑐 ) ) | |
| 139 | 138 | oveq1d | ⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) |
| 140 | 137 139 | mpteq12dv | ⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
| 141 | 140 | rneqd | ⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
| 142 | 66 | mptex | ⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ∈ V |
| 143 | 142 | rnex | ⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ∈ V |
| 144 | 141 9 143 | ovmpoa | ⊢ ( ( ( 𝑏 + 𝑐 ) ∈ 𝑋 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
| 145 | 136 88 144 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
| 146 | 118 133 145 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) |
| 147 | 146 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) |
| 148 | 83 147 | jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) |
| 149 | 148 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) |
| 150 | 55 149 | jca | ⊢ ( 𝜑 → ( ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) ) |
| 151 | 1 7 57 | isga | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ∧ ( ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) ) ) |
| 152 | 13 150 151 | sylanbrc | ⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |