This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . The stabilizer subgroup of any element of S is at most P ^ N in size. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
| sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | ||
| sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | ||
| sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | ||
| sylow1lem3.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | ||
| sylow1lem4.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| sylow1lem4.h | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐵 ) = 𝐵 } | ||
| Assertion | sylow1lem4 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 4 | sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 6 | sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | |
| 7 | sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 8 | sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | |
| 9 | sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | |
| 10 | sylow1lem3.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 11 | sylow1lem4.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 12 | sylow1lem4.h | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐵 ) = 𝐵 } | |
| 13 | fveqeq2 | ⊢ ( 𝑠 = 𝐵 → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) ) | |
| 14 | 13 8 | elrab2 | ⊢ ( 𝐵 ∈ 𝑆 ↔ ( 𝐵 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 15 | 11 14 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
| 16 | 15 | simprd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 17 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 19 | 18 5 | nnexpcld | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 20 | 16 19 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 21 | 20 | nnne0d | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
| 22 | hasheq0 | ⊢ ( 𝐵 ∈ 𝑆 → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) | |
| 23 | 22 | necon3bid | ⊢ ( 𝐵 ∈ 𝑆 → ( ( ♯ ‘ 𝐵 ) ≠ 0 ↔ 𝐵 ≠ ∅ ) ) |
| 24 | 11 23 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ≠ 0 ↔ 𝐵 ≠ ∅ ) ) |
| 25 | 21 24 | mpbid | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 26 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐵 ) | |
| 27 | 25 26 | sylib | ⊢ ( 𝜑 → ∃ 𝑎 𝑎 ∈ 𝐵 ) |
| 28 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
| 29 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝑎 ∈ 𝐵 ) | |
| 30 | oveq2 | ⊢ ( 𝑧 = 𝑎 → ( 𝑏 + 𝑧 ) = ( 𝑏 + 𝑎 ) ) | |
| 31 | eqid | ⊢ ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) | |
| 32 | ovex | ⊢ ( 𝑏 + 𝑎 ) ∈ V | |
| 33 | 30 31 32 | fvmpt | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) = ( 𝑏 + 𝑎 ) ) |
| 34 | 29 33 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) = ( 𝑏 + 𝑎 ) ) |
| 35 | ovex | ⊢ ( 𝑏 + 𝑧 ) ∈ V | |
| 36 | 35 31 | fnmpti | ⊢ ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) Fn 𝐵 |
| 37 | fnfvelrn | ⊢ ( ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) Fn 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) ∈ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) | |
| 38 | 36 29 37 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ‘ 𝑎 ) ∈ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 39 | 34 38 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 + 𝑎 ) ∈ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 40 | 12 | ssrab3 | ⊢ 𝐻 ⊆ 𝑋 |
| 41 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝑏 ∈ 𝐻 ) | |
| 42 | 40 41 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝑏 ∈ 𝑋 ) |
| 43 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → 𝐵 ∈ 𝑆 ) |
| 44 | mptexg | ⊢ ( 𝐵 ∈ 𝑆 → ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) | |
| 45 | rnexg | ⊢ ( ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V → ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) | |
| 46 | 43 44 45 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) |
| 47 | simpr | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 48 | simpl | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝑏 ) | |
| 49 | 48 | oveq1d | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → ( 𝑥 + 𝑧 ) = ( 𝑏 + 𝑧 ) ) |
| 50 | 47 49 | mpteq12dv | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 51 | 50 | rneqd | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝐵 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 52 | 51 9 | ovmpoga | ⊢ ( ( 𝑏 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ∧ ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ∈ V ) → ( 𝑏 ⊕ 𝐵 ) = ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 53 | 42 43 46 52 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 ⊕ 𝐵 ) = ran ( 𝑧 ∈ 𝐵 ↦ ( 𝑏 + 𝑧 ) ) ) |
| 54 | 39 53 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 + 𝑎 ) ∈ ( 𝑏 ⊕ 𝐵 ) ) |
| 55 | oveq1 | ⊢ ( 𝑢 = 𝑏 → ( 𝑢 ⊕ 𝐵 ) = ( 𝑏 ⊕ 𝐵 ) ) | |
| 56 | 55 | eqeq1d | ⊢ ( 𝑢 = 𝑏 → ( ( 𝑢 ⊕ 𝐵 ) = 𝐵 ↔ ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) ) |
| 57 | 56 12 | elrab2 | ⊢ ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ 𝑋 ∧ ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) ) |
| 58 | 57 | simprbi | ⊢ ( 𝑏 ∈ 𝐻 → ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) |
| 59 | 58 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 ⊕ 𝐵 ) = 𝐵 ) |
| 60 | 54 59 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐻 ) → ( 𝑏 + 𝑎 ) ∈ 𝐵 ) |
| 61 | 60 | ex | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐻 → ( 𝑏 + 𝑎 ) ∈ 𝐵 ) ) |
| 62 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 63 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑏 ∈ 𝐻 ) | |
| 64 | 40 63 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑏 ∈ 𝑋 ) |
| 65 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑐 ∈ 𝐻 ) | |
| 66 | 40 65 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑐 ∈ 𝑋 ) |
| 67 | 15 | simpld | ⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝑋 ) |
| 68 | 67 | elpwid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑋 ) |
| 69 | 68 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝑋 ) |
| 70 | 69 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → 𝑎 ∈ 𝑋 ) |
| 71 | 1 7 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) |
| 72 | 62 64 66 70 71 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) |
| 73 | 72 | ex | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑏 ∈ 𝐻 ∧ 𝑐 ∈ 𝐻 ) → ( ( 𝑏 + 𝑎 ) = ( 𝑐 + 𝑎 ) ↔ 𝑏 = 𝑐 ) ) ) |
| 74 | 61 73 | dom2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐵 ∈ 𝑆 → 𝐻 ≼ 𝐵 ) ) |
| 75 | 28 74 | mpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐻 ≼ 𝐵 ) |
| 76 | 27 75 | exlimddv | ⊢ ( 𝜑 → 𝐻 ≼ 𝐵 ) |
| 77 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝐻 ⊆ 𝑋 ) → 𝐻 ∈ Fin ) | |
| 78 | 3 40 77 | sylancl | ⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 79 | 3 68 | ssfid | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 80 | hashdom | ⊢ ( ( 𝐻 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐻 ≼ 𝐵 ) ) | |
| 81 | 78 79 80 | syl2anc | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐻 ≼ 𝐵 ) ) |
| 82 | 76 81 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 83 | 82 16 | breqtrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |