This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sylow's first theorem. If P ^ N is a prime power that divides the cardinality of G , then G has a supgroup with size P ^ N . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
| sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | ||
| Assertion | sylow1 | ⊢ ( 𝜑 → ∃ 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑔 ) = ( 𝑃 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 4 | sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 6 | sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | |
| 9 | oveq2 | ⊢ ( 𝑠 = 𝑧 → ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑢 ( +g ‘ 𝐺 ) 𝑧 ) ) | |
| 10 | 9 | cbvmptv | ⊢ ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 11 | oveq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) | |
| 12 | 11 | mpteq2dv | ⊢ ( 𝑢 = 𝑥 → ( 𝑧 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 13 | 10 12 | eqtrid | ⊢ ( 𝑢 = 𝑥 → ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 14 | 13 | rneqd | ⊢ ( 𝑢 = 𝑥 → ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) = ran ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 15 | mpteq1 | ⊢ ( 𝑣 = 𝑦 → ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 16 | 15 | rneqd | ⊢ ( 𝑣 = 𝑦 → ran ( 𝑧 ∈ 𝑣 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) = ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 17 | 14 16 | cbvmpov | ⊢ ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 18 | preq12 | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → { 𝑎 , 𝑏 } = { 𝑥 , 𝑦 } ) | |
| 19 | 18 | sseq1d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↔ { 𝑥 , 𝑦 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ) ) |
| 20 | oveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑥 ) ) | |
| 21 | id | ⊢ ( 𝑏 = 𝑦 → 𝑏 = 𝑦 ) | |
| 22 | 20 21 | eqeqan12d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ↔ ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑥 ) = 𝑦 ) ) |
| 23 | 22 | rexbidv | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ↔ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑥 ) = 𝑦 ) ) |
| 24 | 19 23 | anbi12d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) ↔ ( { 𝑥 , 𝑦 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑥 ) = 𝑦 ) ) ) |
| 25 | 24 | cbvopabv | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑥 ) = 𝑦 ) } |
| 26 | 1 2 3 4 5 6 7 8 17 25 | sylow1lem3 | ⊢ ( 𝜑 → ∃ ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 27 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → 𝐺 ∈ Grp ) |
| 28 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → 𝑋 ∈ Fin ) |
| 29 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → 𝑃 ∈ ℙ ) |
| 30 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 31 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 32 | simprl | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ) | |
| 33 | eqid | ⊢ { 𝑡 ∈ 𝑋 ∣ ( 𝑡 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) ℎ ) = ℎ } = { 𝑡 ∈ 𝑋 ∣ ( 𝑡 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) ℎ ) = ℎ } | |
| 34 | simprr | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) | |
| 35 | 1 27 28 29 30 31 7 8 17 25 32 33 34 | sylow1lem5 | ⊢ ( ( 𝜑 ∧ ( ℎ ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ( 𝑃 pCnt ( ♯ ‘ [ ℎ ] { 〈 𝑎 , 𝑏 〉 ∣ ( { 𝑎 , 𝑏 } ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ( 𝑢 ∈ 𝑋 , 𝑣 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ↦ ran ( 𝑠 ∈ 𝑣 ↦ ( 𝑢 ( +g ‘ 𝐺 ) 𝑠 ) ) ) 𝑎 ) = 𝑏 ) } ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) → ∃ 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑔 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 36 | 26 35 | rexlimddv | ⊢ ( 𝜑 → ∃ 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑔 ) = ( 𝑃 ↑ 𝑁 ) ) |