This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gaorb.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| gaorber.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | gaorber | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∼ Er 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaorb.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 2 | gaorber.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | 1 | relopabiv | ⊢ Rel ∼ |
| 4 | 3 | a1i | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → Rel ∼ ) |
| 5 | simpr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑢 ∼ 𝑣 ) | |
| 6 | 1 | gaorb | ⊢ ( 𝑢 ∼ 𝑣 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) ) |
| 7 | 5 6 | sylib | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) ) |
| 8 | 7 | simp2d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑣 ∈ 𝑌 ) |
| 9 | 7 | simp1d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑢 ∈ 𝑌 ) |
| 10 | 7 | simp3d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) |
| 11 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 12 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ℎ ∈ 𝑋 ) | |
| 13 | 9 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → 𝑢 ∈ 𝑌 ) |
| 14 | 8 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → 𝑣 ∈ 𝑌 ) |
| 15 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 16 | 2 15 | gacan | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ℎ ⊕ 𝑢 ) = 𝑣 ↔ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) ) |
| 17 | 11 12 13 14 16 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( ℎ ⊕ 𝑢 ) = 𝑣 ↔ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) ) |
| 18 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 19 | 18 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝐺 ∈ Grp ) |
| 20 | 2 15 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ℎ ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 ) |
| 21 | 19 20 | sylan | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 ) |
| 22 | oveq1 | ⊢ ( 𝑘 = ( ( invg ‘ 𝐺 ) ‘ ℎ ) → ( 𝑘 ⊕ 𝑣 ) = ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) ) | |
| 23 | 22 | eqeq1d | ⊢ ( 𝑘 = ( ( invg ‘ 𝐺 ) ‘ ℎ ) → ( ( 𝑘 ⊕ 𝑣 ) = 𝑢 ↔ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) ) |
| 24 | 23 | rspcev | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) |
| 25 | 24 | ex | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 → ( ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
| 26 | 21 25 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
| 27 | 17 26 | sylbid | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( ℎ ⊕ 𝑢 ) = 𝑣 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
| 28 | 27 | rexlimdva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
| 29 | 10 28 | mpd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) |
| 30 | 1 | gaorb | ⊢ ( 𝑣 ∼ 𝑢 ↔ ( 𝑣 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
| 31 | 8 9 29 30 | syl3anbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑣 ∼ 𝑢 ) |
| 32 | 9 | adantrr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑢 ∈ 𝑌 ) |
| 33 | simprr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑣 ∼ 𝑤 ) | |
| 34 | 1 | gaorb | ⊢ ( 𝑣 ∼ 𝑤 ↔ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) |
| 35 | 33 34 | sylib | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) |
| 36 | 35 | simp2d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑤 ∈ 𝑌 ) |
| 37 | 10 | adantrr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) |
| 38 | 35 | simp3d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) |
| 39 | reeanv | ⊢ ( ∃ ℎ ∈ 𝑋 ∃ 𝑘 ∈ 𝑋 ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) | |
| 40 | 18 | ad2antrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → 𝐺 ∈ Grp ) |
| 41 | simprlr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → 𝑘 ∈ 𝑋 ) | |
| 42 | simprll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ℎ ∈ 𝑋 ) | |
| 43 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 44 | 2 43 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ) → ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ∈ 𝑋 ) |
| 45 | 40 41 42 44 | syl3anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ∈ 𝑋 ) |
| 46 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 47 | 32 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → 𝑢 ∈ 𝑌 ) |
| 48 | 2 43 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ 𝑢 ∈ 𝑌 ) ) → ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = ( 𝑘 ⊕ ( ℎ ⊕ 𝑢 ) ) ) |
| 49 | 46 41 42 47 48 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = ( 𝑘 ⊕ ( ℎ ⊕ 𝑢 ) ) ) |
| 50 | simprrl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( ℎ ⊕ 𝑢 ) = 𝑣 ) | |
| 51 | 50 | oveq2d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ⊕ ( ℎ ⊕ 𝑢 ) ) = ( 𝑘 ⊕ 𝑣 ) ) |
| 52 | simprrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) | |
| 53 | 49 51 52 | 3eqtrd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = 𝑤 ) |
| 54 | oveq1 | ⊢ ( 𝑓 = ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) → ( 𝑓 ⊕ 𝑢 ) = ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) ) | |
| 55 | 54 | eqeq1d | ⊢ ( 𝑓 = ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) → ( ( 𝑓 ⊕ 𝑢 ) = 𝑤 ↔ ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = 𝑤 ) ) |
| 56 | 55 | rspcev | ⊢ ( ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ∈ 𝑋 ∧ ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) |
| 57 | 45 53 56 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) |
| 58 | 57 | expr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ) → ( ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
| 59 | 58 | rexlimdvva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ( ∃ ℎ ∈ 𝑋 ∃ 𝑘 ∈ 𝑋 ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
| 60 | 39 59 | biimtrrid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ( ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
| 61 | 37 38 60 | mp2and | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) |
| 62 | 1 | gaorb | ⊢ ( 𝑢 ∼ 𝑤 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
| 63 | 32 36 61 62 | syl3anbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑢 ∼ 𝑤 ) |
| 64 | 18 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
| 65 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 66 | 2 65 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 67 | 64 66 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 68 | 65 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) = 𝑢 ) |
| 69 | oveq1 | ⊢ ( ℎ = ( 0g ‘ 𝐺 ) → ( ℎ ⊕ 𝑢 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) ) | |
| 70 | 69 | eqeq1d | ⊢ ( ℎ = ( 0g ‘ 𝐺 ) → ( ( ℎ ⊕ 𝑢 ) = 𝑢 ↔ ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) = 𝑢 ) ) |
| 71 | 70 | rspcev | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) = 𝑢 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) |
| 72 | 67 68 71 | syl2anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) |
| 73 | 72 | ex | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) |
| 74 | 73 | pm4.71rd | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ∧ 𝑢 ∈ 𝑌 ) ) ) |
| 75 | df-3an | ⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ↔ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) | |
| 76 | anidm | ⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) ↔ 𝑢 ∈ 𝑌 ) | |
| 77 | 76 | anbi2ci | ⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ∧ 𝑢 ∈ 𝑌 ) ) |
| 78 | 75 77 | bitri | ⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ∧ 𝑢 ∈ 𝑌 ) ) |
| 79 | 74 78 | bitr4di | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) ) |
| 80 | 1 | gaorb | ⊢ ( 𝑢 ∼ 𝑢 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) |
| 81 | 79 80 | bitr4di | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 ↔ 𝑢 ∼ 𝑢 ) ) |
| 82 | 4 31 63 81 | iserd | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∼ Er 𝑌 ) |