This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem15.1 | ⊢ Ⅎ 𝑛 𝜑 | |
| stirlinglem15.2 | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | ||
| stirlinglem15.3 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | ||
| stirlinglem15.4 | ⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | ||
| stirlinglem15.5 | ⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | ||
| stirlinglem15.6 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | ||
| stirlinglem15.7 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | ||
| stirlinglem15.8 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) | ||
| stirlinglem15.9 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| stirlinglem15.10 | ⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) | ||
| Assertion | stirlinglem15 | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem15.1 | ⊢ Ⅎ 𝑛 𝜑 | |
| 2 | stirlinglem15.2 | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | |
| 3 | stirlinglem15.3 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 4 | stirlinglem15.4 | ⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | |
| 5 | stirlinglem15.5 | ⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | |
| 6 | stirlinglem15.6 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 7 | stirlinglem15.7 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | |
| 8 | stirlinglem15.8 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 9 | stirlinglem15.9 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 10 | stirlinglem15.10 | ⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) | |
| 11 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 13 | 2cnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℂ ) | |
| 14 | picn | ⊢ π ∈ ℂ | |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℂ ) |
| 16 | 13 15 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · π ) ∈ ℂ ) |
| 17 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 19 | 16 18 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 2 · π ) · 𝑛 ) ∈ ℂ ) |
| 20 | 19 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) ∈ ℂ ) |
| 21 | ere | ⊢ e ∈ ℝ | |
| 22 | 21 | recni | ⊢ e ∈ ℂ |
| 23 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
| 24 | epos | ⊢ 0 < e | |
| 25 | 21 24 | gt0ne0ii | ⊢ e ≠ 0 |
| 26 | 25 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 27 | 17 23 26 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
| 28 | 27 11 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 30 | 20 29 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 31 | 2 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 32 | 12 30 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 34 | 15 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ π ) ∈ ℂ ) |
| 35 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 36 | 35 17 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 37 | 36 | sqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 39 | 34 38 29 | mulassd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ π ) · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 40 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | |
| 41 | 7 40 | nfcxfr | ⊢ Ⅎ 𝑛 𝐹 |
| 42 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 43 | 8 42 | nfcxfr | ⊢ Ⅎ 𝑛 𝐻 |
| 44 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 45 | 6 44 | nfcxfr | ⊢ Ⅎ 𝑛 𝑉 |
| 46 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 47 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 48 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 49 | 3 48 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 |
| 50 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | |
| 51 | 4 50 | nfcxfr | ⊢ Ⅎ 𝑛 𝐷 |
| 52 | faccl | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) | |
| 53 | 11 52 | syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 54 | 53 | nnrpd | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℝ+ ) |
| 55 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 56 | 55 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 57 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 58 | 56 57 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 59 | 58 | rpsqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 60 | epr | ⊢ e ∈ ℝ+ | |
| 61 | 60 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ∈ ℝ+ ) |
| 62 | 57 61 | rpdivcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℝ+ ) |
| 63 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 64 | 62 63 | rpexpcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℝ+ ) |
| 65 | 59 64 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 66 | 54 65 | rpdivcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℝ+ ) |
| 67 | 3 66 | fmpti | ⊢ 𝐴 : ℕ ⟶ ℝ+ |
| 68 | 67 | a1i | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℝ+ ) |
| 69 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | |
| 70 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | |
| 71 | 67 | a1i | ⊢ ( 𝑛 ∈ ℕ → 𝐴 : ℕ ⟶ ℝ+ ) |
| 72 | 2nn | ⊢ 2 ∈ ℕ | |
| 73 | 72 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 74 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 75 | 73 74 | nnmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 76 | 71 75 | ffvelcdmd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 77 | 4 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 78 | 76 77 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 79 | 78 76 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) |
| 80 | 79 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) |
| 81 | 1 49 51 4 68 7 69 70 80 9 10 | stirlinglem8 | ⊢ ( 𝜑 → 𝐹 ⇝ ( 𝐶 ↑ 2 ) ) |
| 82 | nnex | ⊢ ℕ ∈ V | |
| 83 | 82 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V |
| 84 | 6 83 | eqeltri | ⊢ 𝑉 ∈ V |
| 85 | 84 | a1i | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 86 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 87 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 88 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| 89 | 8 86 87 88 | stirlinglem1 | ⊢ 𝐻 ⇝ ( 1 / 2 ) |
| 90 | 89 | a1i | ⊢ ( 𝜑 → 𝐻 ⇝ ( 1 / 2 ) ) |
| 91 | 53 | nncnd | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 92 | 37 28 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 93 | 58 | sqrtgt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 94 | 93 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 95 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 96 | 17 23 95 26 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
| 97 | 27 96 63 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 98 | 37 28 94 97 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 99 | 91 92 98 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 100 | 3 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 101 | 99 100 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 102 | 101 99 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 103 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 104 | 103 | a1i | ⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℕ0 ) |
| 105 | 102 104 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 106 | 79 | rpcnd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 107 | 106 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
| 108 | 79 | rpne0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ≠ 0 ) |
| 109 | 2z | ⊢ 2 ∈ ℤ | |
| 110 | 109 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
| 111 | 106 108 110 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ≠ 0 ) |
| 112 | 105 107 111 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) |
| 113 | 7 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 114 | 112 113 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 115 | 114 112 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 116 | 115 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 117 | 17 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 118 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 119 | 36 118 | addcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 120 | 17 119 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 121 | 75 | nnred | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 122 | 1red | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) | |
| 123 | 75 | nngt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( 2 · 𝑛 ) ) |
| 124 | 0lt1 | ⊢ 0 < 1 | |
| 125 | 124 | a1i | ⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
| 126 | 121 122 123 125 | addgt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 127 | 126 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 128 | 17 119 95 127 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ≠ 0 ) |
| 129 | 117 120 128 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 130 | 8 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) → ( 𝐻 ‘ 𝑛 ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 131 | 129 130 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐻 ‘ 𝑛 ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 132 | 131 129 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐻 ‘ 𝑛 ) ∈ ℂ ) |
| 133 | 132 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) ∈ ℂ ) |
| 134 | 112 129 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ ℂ ) |
| 135 | 3 4 5 6 | stirlinglem3 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 136 | 135 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ ℂ ) → ( 𝑉 ‘ 𝑛 ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 137 | 134 136 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝑉 ‘ 𝑛 ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 138 | 114 131 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐹 ‘ 𝑛 ) · ( 𝐻 ‘ 𝑛 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 139 | 137 138 | eqtr4d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑉 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
| 140 | 139 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑉 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
| 141 | 1 41 43 45 46 47 81 85 90 116 133 140 | climmulf | ⊢ ( 𝜑 → 𝑉 ⇝ ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) ) |
| 142 | 6 | wallispi2 | ⊢ 𝑉 ⇝ ( π / 2 ) |
| 143 | climuni | ⊢ ( ( 𝑉 ⇝ ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) ∧ 𝑉 ⇝ ( π / 2 ) ) → ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) = ( π / 2 ) ) | |
| 144 | 141 142 143 | sylancl | ⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) = ( π / 2 ) ) |
| 145 | 144 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( ( π / 2 ) / ( 1 / 2 ) ) ) |
| 146 | 9 | rpcnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 147 | 146 | sqcld | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 148 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 149 | 148 | halfcld | ⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 150 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 151 | 2pos | ⊢ 0 < 2 | |
| 152 | 151 | a1i | ⊢ ( 𝜑 → 0 < 2 ) |
| 153 | 152 | gt0ne0d | ⊢ ( 𝜑 → 2 ≠ 0 ) |
| 154 | 150 153 | recne0d | ⊢ ( 𝜑 → ( 1 / 2 ) ≠ 0 ) |
| 155 | 147 149 154 | divcan4d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 156 | 14 | a1i | ⊢ ( 𝜑 → π ∈ ℂ ) |
| 157 | 124 | a1i | ⊢ ( 𝜑 → 0 < 1 ) |
| 158 | 157 | gt0ne0d | ⊢ ( 𝜑 → 1 ≠ 0 ) |
| 159 | 156 148 150 158 153 | divcan7d | ⊢ ( 𝜑 → ( ( π / 2 ) / ( 1 / 2 ) ) = ( π / 1 ) ) |
| 160 | 156 | div1d | ⊢ ( 𝜑 → ( π / 1 ) = π ) |
| 161 | 159 160 | eqtrd | ⊢ ( 𝜑 → ( ( π / 2 ) / ( 1 / 2 ) ) = π ) |
| 162 | 145 155 161 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = π ) |
| 163 | 162 | fveq2d | ⊢ ( 𝜑 → ( √ ‘ ( 𝐶 ↑ 2 ) ) = ( √ ‘ π ) ) |
| 164 | 9 | rprege0d | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 165 | sqrtsq | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( √ ‘ ( 𝐶 ↑ 2 ) ) = 𝐶 ) | |
| 166 | 164 165 | syl | ⊢ ( 𝜑 → ( √ ‘ ( 𝐶 ↑ 2 ) ) = 𝐶 ) |
| 167 | 163 166 | eqtr3d | ⊢ ( 𝜑 → ( √ ‘ π ) = 𝐶 ) |
| 168 | 167 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ π ) = 𝐶 ) |
| 169 | 168 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ π ) · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝐶 · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 170 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 171 | 92 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 172 | 170 171 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) |
| 173 | 39 169 172 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) |
| 174 | 173 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) ) |
| 175 | 2re | ⊢ 2 ∈ ℝ | |
| 176 | 175 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℝ ) |
| 177 | pire | ⊢ π ∈ ℝ | |
| 178 | 177 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
| 179 | 176 178 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · π ) ∈ ℝ ) |
| 180 | 0le2 | ⊢ 0 ≤ 2 | |
| 181 | 180 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 2 ) |
| 182 | 0re | ⊢ 0 ∈ ℝ | |
| 183 | pipos | ⊢ 0 < π | |
| 184 | 182 177 183 | ltleii | ⊢ 0 ≤ π |
| 185 | 184 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ π ) |
| 186 | 176 178 181 185 | mulge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 2 · π ) ) |
| 187 | 12 | nn0red | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
| 188 | 12 | nn0ge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 𝑛 ) |
| 189 | 179 186 187 188 | sqrtmuld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) = ( ( √ ‘ ( 2 · π ) ) · ( √ ‘ 𝑛 ) ) ) |
| 190 | 176 181 178 185 | sqrtmuld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · π ) ) = ( ( √ ‘ 2 ) · ( √ ‘ π ) ) ) |
| 191 | 190 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · π ) ) · ( √ ‘ 𝑛 ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ π ) ) · ( √ ‘ 𝑛 ) ) ) |
| 192 | 13 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 2 ) ∈ ℂ ) |
| 193 | 18 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 𝑛 ) ∈ ℂ ) |
| 194 | 192 34 193 | mulassd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( √ ‘ 2 ) · ( √ ‘ π ) ) · ( √ ‘ 𝑛 ) ) = ( ( √ ‘ 2 ) · ( ( √ ‘ π ) · ( √ ‘ 𝑛 ) ) ) ) |
| 195 | 192 34 193 | mul12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ 2 ) · ( ( √ ‘ π ) · ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ π ) · ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) ) ) |
| 196 | 176 181 187 188 | sqrtmuld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) ) |
| 197 | 196 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) = ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 198 | 197 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ π ) · ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 199 | 195 198 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ 2 ) · ( ( √ ‘ π ) · ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 200 | 191 194 199 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · π ) ) · ( √ ‘ 𝑛 ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 201 | 189 200 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 202 | 201 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 203 | 202 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 204 | 91 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 205 | 94 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 206 | 22 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → e ∈ ℂ ) |
| 207 | 25 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → e ≠ 0 ) |
| 208 | 18 206 207 | divcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 / e ) ∈ ℂ ) |
| 209 | 95 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 210 | 18 206 209 207 | divne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 / e ) ≠ 0 ) |
| 211 | 63 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 212 | 208 210 211 | expne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 213 | 38 29 205 212 | mulne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 214 | 9 | rpne0d | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 215 | 214 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ≠ 0 ) |
| 216 | 204 171 170 213 215 | divdiv1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) / 𝐶 ) = ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) ) |
| 217 | 174 203 216 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) / 𝐶 ) ) |
| 218 | 99 | ancli | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) ) |
| 219 | 218 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) ) |
| 220 | 219 100 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 221 | 220 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝐴 ‘ 𝑛 ) ) |
| 222 | 221 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) / 𝐶 ) = ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) |
| 223 | 33 217 222 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) |
| 224 | 1 223 | mpteq2da | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) ) |
| 225 | 102 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 226 | 225 170 215 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) |
| 227 | 1 226 | mpteq2da | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 228 | 146 214 | reccld | ⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 229 | 82 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ∈ V |
| 230 | 229 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ∈ V ) |
| 231 | 3 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 232 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) | |
| 233 | 232 | fveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 234 | 232 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 235 | 234 | fveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 236 | 232 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 𝑛 / e ) = ( 𝑘 / e ) ) |
| 237 | 236 232 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑘 / e ) ↑ 𝑘 ) ) |
| 238 | 235 237 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 239 | 233 238 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 240 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 241 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 242 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 243 | nncn | ⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) | |
| 244 | 241 242 243 | 3syl | ⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 245 | 2cnd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) | |
| 246 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 247 | 245 246 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 248 | 247 | sqrtcld | ⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ∈ ℂ ) |
| 249 | 22 | a1i | ⊢ ( 𝑘 ∈ ℕ → e ∈ ℂ ) |
| 250 | 25 | a1i | ⊢ ( 𝑘 ∈ ℕ → e ≠ 0 ) |
| 251 | 246 249 250 | divcld | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ∈ ℂ ) |
| 252 | 251 241 | expcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ∈ ℂ ) |
| 253 | 248 252 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 254 | 55 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ+ ) |
| 255 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 256 | 254 255 | rpmulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ+ ) |
| 257 | 256 | sqrtgt0d | ⊢ ( 𝑘 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 258 | 257 | gt0ne0d | ⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ≠ 0 ) |
| 259 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 260 | 246 249 259 250 | divne0d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ≠ 0 ) |
| 261 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 262 | 251 260 261 | expne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ≠ 0 ) |
| 263 | 248 252 258 262 | mulne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ≠ 0 ) |
| 264 | 244 253 263 | divcld | ⊢ ( 𝑘 ∈ ℕ → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 265 | 231 239 240 264 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 266 | 265 264 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 267 | 266 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 268 | nfcv | ⊢ Ⅎ 𝑘 ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) | |
| 269 | nfcv | ⊢ Ⅎ 𝑛 1 | |
| 270 | nfcv | ⊢ Ⅎ 𝑛 / | |
| 271 | nfcv | ⊢ Ⅎ 𝑛 𝐶 | |
| 272 | 269 270 271 | nfov | ⊢ Ⅎ 𝑛 ( 1 / 𝐶 ) |
| 273 | nfcv | ⊢ Ⅎ 𝑛 · | |
| 274 | nfcv | ⊢ Ⅎ 𝑛 𝑘 | |
| 275 | 49 274 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 276 | 272 273 275 | nfov | ⊢ Ⅎ 𝑛 ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) |
| 277 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) ) | |
| 278 | 277 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 279 | 268 276 278 | cbvmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 280 | 279 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 281 | 280 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑘 ) ) |
| 282 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 283 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 284 | 214 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ≠ 0 ) |
| 285 | 283 284 | reccld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝐶 ) ∈ ℂ ) |
| 286 | 285 267 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 287 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) | |
| 288 | 287 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 289 | 282 286 288 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 290 | 281 289 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 291 | 46 47 10 228 230 267 290 | climmulc2 | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ⇝ ( ( 1 / 𝐶 ) · 𝐶 ) ) |
| 292 | 146 214 | recid2d | ⊢ ( 𝜑 → ( ( 1 / 𝐶 ) · 𝐶 ) = 1 ) |
| 293 | 291 292 | breqtrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ⇝ 1 ) |
| 294 | 227 293 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) ⇝ 1 ) |
| 295 | 224 294 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) |