This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root of square. (Contributed by NM, 14-Jan-2006) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) | |
| 2 | resqcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) | |
| 3 | sqge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) | |
| 4 | 2 3 | jca | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ) |
| 6 | sqrtsq2 | ⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ↔ ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) ) | |
| 7 | 5 6 | mpancom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ↔ ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) ) |
| 8 | 1 7 | mpbiri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |