This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqrcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| resqrcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| sqr11d.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| sqr11d.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | ||
| Assertion | sqrtmuld | ⊢ ( 𝜑 → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | resqrcld.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 3 | sqr11d.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | sqr11d.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | |
| 5 | sqrtmul | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |