This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem1.1 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| stirlinglem1.2 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) | ||
| stirlinglem1.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) | ||
| stirlinglem1.4 | ⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | ||
| Assertion | stirlinglem1 | ⊢ 𝐻 ⇝ ( 1 / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem1.1 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 2 | stirlinglem1.2 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 3 | stirlinglem1.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 4 | stirlinglem1.4 | ⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | divcnv | ⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 |
| 10 | 4 9 | eqbrtri | ⊢ 𝐿 ⇝ 0 |
| 11 | 10 | a1i | ⊢ ( ⊤ → 𝐿 ⇝ 0 ) |
| 12 | nnex | ⊢ ℕ ∈ V | |
| 13 | 12 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V |
| 14 | 3 13 | eqeltri | ⊢ 𝐺 ∈ V |
| 15 | 14 | a1i | ⊢ ( ⊤ → 𝐺 ∈ V ) |
| 16 | 4 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐿 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ) |
| 17 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) | |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
| 19 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 20 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 21 | 20 | rpreccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 22 | 16 18 19 21 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐿 ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 23 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 24 | 22 23 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐿 ‘ 𝑘 ) ∈ ℝ ) |
| 25 | 24 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐿 ‘ 𝑘 ) ∈ ℝ ) |
| 26 | 3 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 27 | 17 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 28 | 27 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 30 | 2re | ⊢ 2 ∈ ℝ | |
| 31 | 30 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
| 32 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 33 | 31 32 | remulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
| 34 | 0le2 | ⊢ 0 ≤ 2 | |
| 35 | 34 | a1i | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
| 36 | 20 | rpge0d | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ 𝑘 ) |
| 37 | 31 32 35 36 | mulge0d | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 2 · 𝑘 ) ) |
| 38 | 33 37 | ge0p1rpd | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ+ ) |
| 39 | 38 | rpreccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
| 40 | 26 29 19 39 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 41 | 39 | rpred | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
| 42 | 40 41 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 43 | 42 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 44 | 1red | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) | |
| 45 | 0le1 | ⊢ 0 ≤ 1 | |
| 46 | 45 | a1i | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ 1 ) |
| 47 | 33 44 | readdcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
| 48 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 49 | 48 | mullidd | ⊢ ( 𝑘 ∈ ℕ → ( 1 · 𝑘 ) = 𝑘 ) |
| 50 | 1lt2 | ⊢ 1 < 2 | |
| 51 | 50 | a1i | ⊢ ( 𝑘 ∈ ℕ → 1 < 2 ) |
| 52 | 44 31 20 51 | ltmul1dd | ⊢ ( 𝑘 ∈ ℕ → ( 1 · 𝑘 ) < ( 2 · 𝑘 ) ) |
| 53 | 49 52 | eqbrtrrd | ⊢ ( 𝑘 ∈ ℕ → 𝑘 < ( 2 · 𝑘 ) ) |
| 54 | 33 | ltp1d | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) < ( ( 2 · 𝑘 ) + 1 ) ) |
| 55 | 32 33 47 53 54 | lttrd | ⊢ ( 𝑘 ∈ ℕ → 𝑘 < ( ( 2 · 𝑘 ) + 1 ) ) |
| 56 | 32 47 55 | ltled | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 57 | 20 38 44 46 56 | lediv2ad | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
| 58 | 57 40 22 | 3brtr4d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
| 59 | 58 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
| 60 | 39 | rpge0d | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 61 | 60 40 | breqtrrd | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 62 | 61 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 63 | 5 6 11 15 25 43 59 62 | climsqz2 | ⊢ ( ⊤ → 𝐺 ⇝ 0 ) |
| 64 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 65 | 12 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ V |
| 66 | 2 65 | eqeltri | ⊢ 𝐹 ∈ V |
| 67 | 66 | a1i | ⊢ ( ⊤ → 𝐹 ∈ V ) |
| 68 | 43 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 69 | 2 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 70 | 29 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 71 | 1cnd | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) | |
| 72 | 2cnd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) | |
| 73 | 72 48 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 74 | 73 71 | addcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 75 | 38 | rpne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
| 76 | 74 75 | reccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 77 | 71 76 | subcld | ⊢ ( 𝑘 ∈ ℕ → ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 78 | 69 70 19 77 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 79 | 40 | eqcomd | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 80 | 79 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 1 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 81 | 78 80 | eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 1 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 82 | 81 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 1 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 83 | 5 6 63 64 67 68 82 | climsubc2 | ⊢ ( ⊤ → 𝐹 ⇝ ( 1 − 0 ) ) |
| 84 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 85 | 83 84 | breqtrdi | ⊢ ( ⊤ → 𝐹 ⇝ 1 ) |
| 86 | 64 | halfcld | ⊢ ( ⊤ → ( 1 / 2 ) ∈ ℂ ) |
| 87 | 12 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ V |
| 88 | 1 87 | eqeltri | ⊢ 𝐻 ∈ V |
| 89 | 88 | a1i | ⊢ ( ⊤ → 𝐻 ∈ V ) |
| 90 | 78 77 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 91 | 90 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 92 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 93 | 92 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 94 | 93 | mullidd | ⊢ ( 𝑛 ∈ ℕ → ( 1 · ( 𝑛 ↑ 2 ) ) = ( 𝑛 ↑ 2 ) ) |
| 95 | 94 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 1 · ( 𝑛 ↑ 2 ) ) ) |
| 96 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 97 | 96 92 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 98 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 99 | 92 97 98 | adddid | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 · ( 2 · 𝑛 ) ) + ( 𝑛 · 1 ) ) ) |
| 100 | 92 96 92 | mul12d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( 2 · 𝑛 ) ) = ( 2 · ( 𝑛 · 𝑛 ) ) ) |
| 101 | 92 | sqvald | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
| 102 | 101 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 𝑛 ) = ( 𝑛 ↑ 2 ) ) |
| 103 | 102 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 · 𝑛 ) ) = ( 2 · ( 𝑛 ↑ 2 ) ) ) |
| 104 | 100 103 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( 2 · 𝑛 ) ) = ( 2 · ( 𝑛 ↑ 2 ) ) ) |
| 105 | 92 | mulridd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 1 ) = 𝑛 ) |
| 106 | 104 105 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 · ( 2 · 𝑛 ) ) + ( 𝑛 · 1 ) ) = ( ( 2 · ( 𝑛 ↑ 2 ) ) + 𝑛 ) ) |
| 107 | 2ne0 | ⊢ 2 ≠ 0 | |
| 108 | 107 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
| 109 | 92 96 108 | divcan2d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 / 2 ) ) = 𝑛 ) |
| 110 | 109 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → 𝑛 = ( 2 · ( 𝑛 / 2 ) ) ) |
| 111 | 110 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 𝑛 ↑ 2 ) ) + 𝑛 ) = ( ( 2 · ( 𝑛 ↑ 2 ) ) + ( 2 · ( 𝑛 / 2 ) ) ) ) |
| 112 | 92 | halfcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / 2 ) ∈ ℂ ) |
| 113 | 96 93 112 | adddid | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( ( 2 · ( 𝑛 ↑ 2 ) ) + ( 2 · ( 𝑛 / 2 ) ) ) ) |
| 114 | 111 113 | eqtr4d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 𝑛 ↑ 2 ) ) + 𝑛 ) = ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
| 115 | 99 106 114 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) = ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
| 116 | 95 115 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 · ( 𝑛 ↑ 2 ) ) / ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
| 117 | 93 112 | addcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ∈ ℂ ) |
| 118 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 119 | 2z | ⊢ 2 ∈ ℤ | |
| 120 | 119 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
| 121 | 118 120 | rpexpcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℝ+ ) |
| 122 | 118 | rphalfcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / 2 ) ∈ ℝ+ ) |
| 123 | 121 122 | rpaddcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ∈ ℝ+ ) |
| 124 | 123 | rpne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ≠ 0 ) |
| 125 | 98 96 93 117 108 124 | divmuldivd | ⊢ ( 𝑛 ∈ ℕ → ( ( 1 / 2 ) · ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( ( 1 · ( 𝑛 ↑ 2 ) ) / ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
| 126 | 93 112 | pncand | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) = ( 𝑛 ↑ 2 ) ) |
| 127 | 126 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) ) |
| 128 | 127 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
| 129 | 117 112 117 124 | divsubdird | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
| 130 | 117 124 | dividd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = 1 ) |
| 131 | 130 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( 1 − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
| 132 | 128 129 131 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( 1 − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
| 133 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 134 | 96 92 133 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 / 𝑛 ) ∈ ℂ ) |
| 135 | 96 92 108 133 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( 2 / 𝑛 ) ≠ 0 ) |
| 136 | 112 117 134 124 135 | divcan5rd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) / ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) ) = ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
| 137 | 92 96 133 108 | divcan6d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) = 1 ) |
| 138 | 93 112 134 | adddird | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) = ( ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) + ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) ) ) |
| 139 | 93 96 92 133 | div12d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) = ( 2 · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) ) |
| 140 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 141 | 140 | oveq2i | ⊢ ( 𝑛 ↑ 1 ) = ( 𝑛 ↑ ( 2 − 1 ) ) |
| 142 | 92 | exp1d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 1 ) = 𝑛 ) |
| 143 | 92 133 120 | expm1d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 2 − 1 ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 144 | 141 142 143 | 3eqtr3a | ⊢ ( 𝑛 ∈ ℕ → 𝑛 = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 145 | 144 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = 𝑛 ) |
| 146 | 145 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( 2 · 𝑛 ) ) |
| 147 | 139 146 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) = ( 2 · 𝑛 ) ) |
| 148 | 147 137 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) + ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 149 | 138 148 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 150 | 137 149 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) / ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 151 | 136 150 | eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 152 | 151 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( 1 − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 153 | 132 152 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 154 | 153 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 1 / 2 ) · ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 155 | 116 125 154 | 3eqtr2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 156 | 155 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 157 | 1 156 | eqtri | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 158 | 157 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
| 159 | 70 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 160 | 71 | halfcld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 2 ) ∈ ℂ ) |
| 161 | 160 77 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ∈ ℂ ) |
| 162 | 158 159 19 161 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 163 | 78 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 2 ) · ( 𝐹 ‘ 𝑘 ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 164 | 162 163 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( ( 1 / 2 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 165 | 164 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( ( 1 / 2 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 166 | 5 6 85 86 89 91 165 | climmulc2 | ⊢ ( ⊤ → 𝐻 ⇝ ( ( 1 / 2 ) · 1 ) ) |
| 167 | 166 | mptru | ⊢ 𝐻 ⇝ ( ( 1 / 2 ) · 1 ) |
| 168 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 169 | 168 | mulridi | ⊢ ( ( 1 / 2 ) · 1 ) = ( 1 / 2 ) |
| 170 | 167 169 | breqtri | ⊢ 𝐻 ⇝ ( 1 / 2 ) |