This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of climmul using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climmulf.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climmulf.2 | ⊢ Ⅎ 𝑘 𝐹 | ||
| climmulf.3 | ⊢ Ⅎ 𝑘 𝐺 | ||
| climmulf.4 | ⊢ Ⅎ 𝑘 𝐻 | ||
| climmulf.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climmulf.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climmulf.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climmulf.8 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| climmulf.9 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | ||
| climmulf.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climmulf.11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| climmulf.12 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | climmulf | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmulf.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climmulf.2 | ⊢ Ⅎ 𝑘 𝐹 | |
| 3 | climmulf.3 | ⊢ Ⅎ 𝑘 𝐺 | |
| 4 | climmulf.4 | ⊢ Ⅎ 𝑘 𝐻 | |
| 5 | climmulf.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 6 | climmulf.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 7 | climmulf.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 8 | climmulf.8 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 9 | climmulf.9 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | |
| 10 | climmulf.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 11 | climmulf.11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 12 | climmulf.12 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | |
| 13 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
| 14 | 13 | nfel1 | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
| 15 | 1 14 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
| 16 | 2 13 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
| 17 | 16 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) ∈ ℂ |
| 18 | 15 17 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 19 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
| 23 | 20 22 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) ) |
| 24 | 18 23 10 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 25 | 3 13 | nffv | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) |
| 26 | 25 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) ∈ ℂ |
| 27 | 15 26 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
| 28 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) ) |
| 30 | 20 29 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) ) ) |
| 31 | 27 30 11 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
| 32 | 4 13 | nffv | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) |
| 33 | nfcv | ⊢ Ⅎ 𝑘 · | |
| 34 | 16 33 25 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) |
| 35 | 32 34 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) |
| 36 | 15 35 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
| 37 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑗 ) ) | |
| 38 | 21 28 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
| 39 | 37 38 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 40 | 20 39 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 41 | 36 40 12 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
| 42 | 5 6 7 8 9 24 31 41 | climmul | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · 𝐵 ) ) |